SimuLED Tutorials

STR-Group Ltd March, 2016

Tutorial 1 SiLENSe 5.10 & SiLENSe Laser Edition 5.10

Specifying a New Problem in SiLENSe: Simulation of InGaN MQW LED Heterostructure

Creating a new project for InGaN MQW heterostructure

This tutorial shows how to create a new project similar to 'MQW-example' supplied with the software, specify all necessary input data, run simulations, and prepare input data for SpeCLED. It includes the following steps:

- **Step 1:** Choosing material data and creating new project
- **Step 2:** Specification of the heterostructure layers
- **Step 3:** Specification of global parameters (like temperature)
- **Step 4:** Simulation of the band diagram, carrier concentration, carrier transport; inspecting results
- **Step 5:** Simulation of carrier energy levels, wave functions, and emission spectrum; inspecting results

Step 6 (optional): Preparing input data for SpeCLED

Step 1: Creating a new project

1. Open SiLENSe and press **New** button from the toolbar.

A modal window appears where the user is prompted to browse a database file (*.matprop) with materials properties.

2. Choose wurtzite database supplied with SiLENSe. It includes properties of two systems with wurtzite crystal symmetry, namely, AlInGaN and MgZnO.

Lists of available materials and alloys shows data contained in the chosen database file. **Green mark** and **red cross** indicate good and insufficient data.

3. Press **OK** to create the project.

SiLENSe comes with two databases of material properties, **wurtzite** and **zinc_blende**. The user can edit the data contained in these databases using a separate Properties Editor (**ProEdit.exe**) and create new custom *.matprop files.

Step1 (Continued): Materials vs. Alloys in SiLENSe database

Eile Heterostructure Material properties ☆ ☞ ■ ● ● ● ■ □	rties <u>R</u> un		<u>W</u> indow	He <u>l</u> p	
Heterostructure Global parameters	Materials	properties Res	sults Spe	ctrum Laser pa	arameters Waveguide PL pa
Materials parameters					
Alloys Materials				Select name :	Ga(0.51)InP_G ▼
Property	Unit	Ga(0.51)InP_G			GaP_G GaP_X InP_G
Energy gap	eV	2.007	-		InP_X
Varshni parameter a	meV/K	0.688			AIP_G AIP X
Varshni parameter b	K	360			Ga(0.51)InP_G
Crystal-field splitting	meV	0			Ga(0.51)InP_X
Spin-orbital splitting	meV	94			AI(0.52)InP_G
Electron affinity	eV	3.827			Al(0.52)InP_X GaAs G
Dielectric constant	-	11.8			GaAs_G_copy
Electron effective mass along axis a	mO	0.08			GaAs_X
Electron effective mass along axis c	mO	0.08			AlAs_G
Heavy hole effective mass along axis a	m0	0.7			AIAs_X InAs_G
Heavy hole effective mass along axis	m0	0.7			IIIA5_G
Light hole effective mass along axis a	m0	0.12			
Light hole effective mass along axis c	mO	0.12			

In specification of materials properties, SiLENSe distinguishes between materials of fixed composition (like GaN, AIN, InN) and their alloys where composition may be continuously varied with one or more degree of freedom (like $AI_xGa_{1-x}N$, $In_xGa_{1-x}N$, $AI_xIn_yGa_{1-x-y}N$) and properties calculated through the respective properties of materials and bowing parameters (both are stored in the respective *.matprop file).

Note that ternary and quaternary compounds can also be treated by the software as materials when they have fixed composition and properties described in the database explicitly with no option of composition variation and respective adjustments, see the example above, where $Ga_{0.51}In_{0.49}P$ alloy is specified as a material. Because of its importance is might be useful to specify its properties explicitly. Also, it may be used later as a basic material for AlGaInP alloys lattice matched to GaAs.

Step1 (Continued): Inspecting material properties

Step 1 (Continued): Bowing parameters

SiLENSe 4.00 Laser I e Heterostructure M	<u>aterial properties</u>	port <u>T</u> ools <u>W</u> ir	idow Help				Bowing parameters			
): 🕞 🖬 🕨				Í.	. [/		
	bal parameters Materia	is propercies F	fesults Speci	trum Laser pa	arameters Wa	aveguide				
Materials parameters Alloys	Materials		Se	elect name : 🖡	AllnGaN	-				
P	/roperty	Unit	AIN	InN	GaN	AIN InN	AIN GaN	InN GaN		
Energy gap		eV	6.25	0.69	3.51	-4.5	-1	-1.2		
Varshni parameter a		me¥/K	1.799	0.245	0.909	0	0	0		
Varshni parameter b		к	1462	624	830	0	0	0		
Crystal-field splitting	1	meV	-93.2	37.3	22.3	0	0	0		
Spin-orbital splitting		meV	11.1	11.1	11.1	0	0	0		
Electron affinity		eV	0	3.85	1.96	3.15	0.7	0.84		
Dielectric constant		-	8.5	15.3	8.9	0	0	0		
Electron effective m	ass along axis a	mO	0.26	0.1	0.2	0	0	0		
Electron effective m	ass along axis c	mO	0.25	0.1	0.2	0	0	0		
Heavy hole effective	e mass along axis a	mO	2.58	1.45	1.65	0	0	0		
Heavy hole effective	e mass along axis c	mO	1.95	1.35	1.1	0	0	0		
Light hole effective	mass along axis a	mO	0.27	0.1	0.15	0	0	0		
Light hole effective	mass along axis c	mO	1.95	1.35	1.1	0	0	0		
Split-off hole effecti	ve mass along axis a	mO	1.95	1.54	1.1	0	0	0		
Split-off hole effecti	ve mass along axis c	mO	0.27	0.1	0.15	0	0	0		
Lattice constant a		nm	0.3112	0.354	0.3188	0	0	0		
Lattice constant c		nm	0.4982	0.5705	0.5186	0	0	0		
Stiffness constant C	:11	GPa	395	225	375	0	0	0		
Stiffness constant C	:12	GPa	140	110	140	0	0	0		
Stiffness constant C	:13	GPa	115	95	105	0	0	0		
Stiffness constant C	:33	GPa	385	200	395	0	0	0		
Stiffness constant C	44	GPa	120	45	100	0	0	0		
Piezoelectric consta	nnte15	C/m^2	-0.48	-0.18	-0.27	0	0	0		
Piezoelectric consta	unt o.21	Г/m^2	.0.58	.0.22	.0.22	0	0	0		

By default, most properties have zero bowing parameters, that means that linear interpolation is used to calculate the property for alloy of given composition.

Note the sign of the bowing parameters! **Negative bowing means decreasing** of the property compared to the linear interpolation (an opposite definition is often used)

It is assumed that user does not need to change properties during everyday work. Instead, it is recommended to work with the same chosen set of material properties for all simulations for self-consistency of the whole research project. When necessary, editing of materials properties to be done with **Properties Editor** tool **MatProp.exe** (not discussed in this tutorial). One can update materials properties by using **Materials Properties->Import** menu item.

Step 2: Adding heterostructure layers

Heterostructure tab allows one to specify the heterostructure layers:

1. Press Add Layer button to add a new layer.

2. A pop-up menu appears allowing one to choose belween **Materials** and **Alloys.** Both items contain submenus with list of available materials and alloys.

3. You can choose either Materials->GaN to add GaN layer or, alternatively, Alloys->AllnGaN. In the latter case you will also have to specify composition as $AI_0In_0Ga_1N$.

Note that later on you can also copy-paste existing layers to create new ones.

🌾 SiLENSe 4.00 Laser Edition : Untitled	
File Heterostructure Material properties Run Export Tools Window Help	
Heterostructure Glot al parameters Materials properties Results Spectrum La	
	Current layer parameters :
Alloys Name Thickness, nm Type	Composition
Materials AlN	
GaN	
ZnO	
MgO Sapphire	
Sapphire SiC-6H	Dopant concentration (cm^-3)
SIC-6H SIC-4H	Dopant Left Right Middle
	Donors
	Acceptors Strain in the first layer : Heterostructure orientation :
	First layer is strained Orientation [0001] (Ga-polar)
	Inclination angle for GaN (degree): 0
Structure visualization	
Doping Mobility Relaxation Dislocation density Lifetimes DOS tails	
1	

Heterostructure has to start with n-type layer and end with p-type layer.

No nucleation and buffer layers to be specified.

Step 2 (Continued): Layer thickness and composition

	rties <u>R</u> un <u>E</u> xport <u>T</u> ools <u>W</u> indow He <u>lp</u> Materials properties Results Spectrum Laser pa	own convenience	the layer for your	
N Name Image:	Thickness, nn Type 500 AllnGaN Layer properties General properties :	ress (nm) : 500 Active region	actual thickness layer is several m one can use a re 500-1000 nm. It n	er thickness. While of the first n-GaN icrons, in SiLENSe duced thickness of nust be just several an the depletion
	Corpersation : Fraction Left point Right po AIN GaN GaN Dopant concentration :		DOS tail parameter Un (eV) DOS tail parameter Up (eV) DOS tail parameter Usp (eV) Crystal lattice relaxation :	as used here to
Press Edit Layer button just double-click the ver row in the table to en the window with the ver properties	Type Left point Right • Donors (cm^-3) 2.000E+18 • Acceptors (cm^-3) 0 • Mobility :	t point Middle Sum of Unity.	d be specified. each alloy layer, c ft point must be sp of all fractions shou (Composition spec	composition at Decified and the uld be equal to ification will be
	Composition previe w		ssed in more detail la	iter)

Additional information: graded composition

Layer properties When composition is specified a both left and right points, linear composition profile is created	
Layer type : Allc AllnGaN Composition : Fraction Left point Right point Middle point Image: All of the second s	Dislocation d Use composit DOS tail Do tail parameter op (ev)
InN 0 0 GaN 0.9 0.8 Image: Concentration Image: Concentration	DOS tail parameter Usp (e) Composition preview Crystal lattice relaxation : 1.00 © Degree of relaxation 0.80
Composition preview button opens the window with plotted composition profiles	0.60 0.40 0.20
Ele Cm^2/V/s) I00 Filling this column the input of se composition preview Hole m^2/V/s) I0 Composition preview	econd-order

Layer composition may be specified by using a **custom function**, defined by user by a script or by a table which can be imported from a text file. To use function, one need pick up the function name in the respective drop-down list. One can edit functions by using **Heterostructure->Functions** menu item. The **auto** menu item means that this component is determined automatically to make total composition equal to 1.

	Layer properties		(here)	7	
	- General properties :	1. Specify donor	concentration	n-radiative recombination :	
	Layer name : n-GaN	of 2e18 cm ⁻³ an		ectron non-radiative lifetime (s)	
		acceptor concentr		ple non-radiative lifetime (s)	
	Layer type :	· · · · · · · · · · · · · · · · · · ·		slocation density (cm^-2) 1.000E+09	
	AlinG	iaN	region	Use composition fluctuation model 🛛 🗌	
	- Composition :			DOS tail parameter Un (eV) 0	
	Fraction Left p		dle point	DOS tail parameter Up (eV) 0	
	• InN 0			DOS tail parameter Usp (eV) 0	
	GaN 1			Crystal lattice relaxation :	
2. Keep the default values			(File)	Degree of relaxation	-
for both mobilities				Relaxed lattice constant a (nm)	–
	- Dopant concentration : Type Le	eft point Right point N	Middle point		
	Donors (cm^-3) 2.000				
	Acceptors (cm ⁻³)			3. Press OK to accept	
	Mobility :	, , ,		the changes	
		eft point Right point N	Middle point		
	Electrons (cm ² /V/s) 100				
	• Holes (cm^2/V/s) 10				
	Composition previe w				cel

Note that **dopant concentration** means exactly the **concentration of the doping atoms**, NOT the carrier concentration which is calculated by the program! Hole concentration in, for instance, III-nitrides may be ~50 times lower than Mg concentration because of high activation energy.

Step 2 (Continued): Adding InGaN quantum well layer

<u>F</u> ile <u>H</u>	eterostructure <u>M</u> aterial properties	<u>R</u> un <u>E</u> xport <u>T</u> ools <u>W</u> indow	/ He <u>l</u> p						
D) 🛏									
Hetero	structure Global param 1. TO a	add InGaN quant	um well layer	, press Add Laye	er button	and			
Layers		e Alloys->AllnGa	aN. Double-o	click new layer to	edit it.				
	1 n-GaN	ouu AlinGaN		Fraction	Left	Right	Middle		_
	2 InGaN-QW	3 AllnGaN	AIN		0				
		Layer properties	Tuper				2. Mark	this lave	er as Active
		General properties : —							so be done
M		Layer name : InGaN-0	GW Lay	ver thickness (nm) : 3					ecification of
\bigcirc		_							fects only the
		Layer type :	Alloys		Active			computat	
			AllnGaN		egion	Use c	spectrum	computat	1011)
						Use L			
\mathbf{A}		Composition : Fraction	Left point F	Right point Middle po	int	DOS tai	l parameter U	ı (eV)	0.035
						DOS tai	l parameter Uj	p (eV)	0.015
			0.13						
			0.87			DUSTAI	l parameter Us	3p (ev)	0.025
Struct	II ure visualization		0.07			-Crystal I	lattice relaxatio	on :	
Dopin	g Mobility Relaxation Dislocation							e et the l	
1.0E+	18			☐ 3. For each a					
1.0E-	16	- Dopant concentration :		point must be					
1.0E+	14	Туре	Left point	QW with 13%	Indium	conten	nt. Sum o	f all rows	has
1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+ 1.0E+	11	Donors (cm ⁻³)	0	to be unity					
1.0E+ 1.0E+ 1.0E+	-09 - -08 - -07 -	Acceptors (cm ⁻³)	0	Blank Right p	oint and	Middl	o point c	olumne m	000
1.0E-	06 Q5	Mobility :		- · ·					
1.0E+	04	Туре	Left point	that composition	on does	notva	ry across	the layer	
1.0E+	01 - 00 -	Electrons (cm ² /V/s)) 100						
	0	Holes (cm^2/V/s)	10						
		Composition preview	v			J		🗸 ОК	X Cancel

Step 2 (Continued): Shockley-Read-Hall recombination

In SiLENSe, there are two ways to specify the rate of non-radiative Shockley-Read-Hall recombination. One is direct specification of the carrier lifetimes due to point defects. The other way is to use an original model which relates the carrier lifetimes with the dislocation density. Both mechanisms contribute to the total non-radiative recombination rate independently, see Theory manual for details.

Layer properties	Tuper				Composition
- General properties : -					Non-radiative recombination :
Layer name : InGaN	I-QW	_ayer thickness (nr	m) : 3	_	Electron non-radiative lifetime (s)
-					Hole non-radiative lifetime (s)
Layer type :	Alloys	6	Active		Dislocation density (cm^-2)
	AllnGaN		region		Use composition fluctuation model
- Composition : Fraction	Left point	Right point	Middle point		DOS tail parameter Un (eV)
AIN	0 💌				DOS tail parameter Up (eV 0.015 These two parameters
InN	0.13 💌				DOS tail parameter Us 0.025 describe carrier lifetimes
💽 GaN	0.87 💌				with respect to point
	_				Crystal lattice relevent defects. Blank fields mean
	_			The	e dislocation density of that this recombination
Dopant concentration	:			1e9	9 cm ⁻² is specified channel is ignored for this
Туре	Left point	Right point	Middle poin		layer
Donors (cm^-3)	0				
Acceptors (cm ⁻³)	0				
- Mobility :					
Туре	Left point	Right point	Middle point		
Electrons (cm ² /V/	/s) 100				
Holes (cm^2/V/s)	10				
Composition previo	ew				✓ OK X Cancel

Section Composition fluctuations allows the user to input parameters related to

Step 2 (Continued): Composition fluctuation and relaxation

				Indium	n compositi	on fluctuations in InGaN
Layer properties	Tuese		Composition			Jn and Up parameters are
General properties :			-Non-radiative recombinat	35 me	V and 15 m	eV, respectively
Layer name : InGaN-Q\	V Layer thickness	(nm) : 3	Electron non-radiative life		`	
			Hole non-radiative lifetime	e (s)		
Layer type :	Alloys	Active	Dislocation density (cm^-/	2)	1.0	
	AllnGaN	region	Use composition fluctuation	on model		
- Composition : Fraction	Left point Right point	Middle point	DOS tail parameter Un (e ^y	v)	0.035	
• AIN 0	▼		DOS tail parameter Up (e'	v)	0.015	
• InN 0.			DOS tail parameter Usp (e	eV)	0.025	
GaN 0.	87 💌		Crystal lattice relaxation :			Zero degree of relaxation
	<u> </u>		Degree of relaxation		0	means that no relaxation
	$\overline{}$					occurs in this layer (by
Dopant concentration : -			 Relaxed lattice constant 	ınt a (nm)		default, heterostructure is
Туре	Left point Right poin	nt Middle point				assumed to be grown
Donors (cm ⁻³)	0				/	pseudomorphically, i.e. all
Acceptors (cm ⁻³)	0			´ /		layers have the same
Mobility :				/		lattice constant)
Туре	Left point Right poi	nt Middle point				
Electrons (cm ² /V/s)	100					
Holes (cm^2/V/s)				L		
	Alternatively to as	signing the relax	ation degree at the	e left in	terface	
Composition preview	of the layer, the u		-			
	may be also speci					
			in anotion of by t			

Step 2 (Continued): Copy, paste and move layers

Step 2 (Continued): Creating periodic structures

Step 2 (Continued): Finalizing the structure

ostruct	ture Global parameters	🗉 🗖 🐼	erties Results Sj	pectrum Laser	parameters	Waveguide P	² L paramet	ers			
rs :					Current lay	er parameters	:				
N	I Name n-GaN	Fhickness, nn 500	Type AllnGaN					Compos			
2 X 3	InGaN-QW	3	AllnGaN		AIN	Fraction		Left 0	Right	Middle	
3X3	n-GaN-barrier	12	AllnGaN		InN			Ő			
4	InGaN-OW	3	AllnGaN		GaN			1			
5	n-GaN-barrier p-AlGaN	12 60	AllnGaN AllnGaN								
7	p-GaN	500	AlinGaN								
							Dopan	t concentr	ation (cm^-3))	
	blocking layer,					allows c					
ture vi	with the softwar barrier is p-dop from p-side	re. Please ed becaus	e of Mg diff	usion	⊖ Firs	paramete heterostru second-ou shown as	ucture. rder va	Note ariation	that ir of pai		plot

Step 3: Specification of polarity and lattice constant

<u>File Heterostructure Material properties Run Export Tools Mindow Help</u>	
	3. The user can choose one of the standard
Heterostructure Global parameters Materials properties Results Spectrum Las	ser parameters heterostructure orientations including a number
Layers :	Current le of nonpolar and semipolar ones from the drop-
N Name Fhickness, nn Type	down menu. Respective inclination angle will be
1. By default, the first heterostructure layer is	an shown below the combo box
assumed to be relaxed, i.e having its natural	InN GaN 1
lattice constant. It is reasonable because of	
typically high thickness of the first layer. So,	
option First layer is relaxed is used in most	Dopant concentration (cm^-3)
	Dopant Left Right Middle
of projects	Donors 0 Acceptors 5.000E+19
	Strain in the first layer :
	First layer is relaxed
2. In some very rare cases, the	C First layer is strained
user may want to directly input the	Inclination angle (degree):
lattice constant for the first layer,	
that can be done by selecting	
Structure V Occation density Lifetimes DOS tails	
	ucture orientation :
C First layer is relaxed Orientation	
First layer is strained Lattice constants:	[0001] (Ga-polar) [000-1] (N-polar) Inclination Angle in the
	in angle (nonpolar
a (nm) 0.3188	[10-1-3] (semipolar) [11-22] (semipolar) [11-12] (semipolar) [11-12] (semipolar)
c (nm) 0.5184	[10-1-1] (semipolar) Custom Inclination Angle angle in [0,180] range

Step 3 (Continued): Temperature and solver options

Physical parameters Temperature here Temperature (K) Quantum Potential Model Yes Electron Quantum Potential Correction Facto 1 Temperature here These three parameters describe temperature variation of tis assumed that B(T) = B(300K) * (300/T)^(3/2) Main solver parameters and Auger coefficients have no temperature Basic mesh step for thick layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 100	parameters	
temperature here Quantum Potential Model Yes Electron Quantum Potential Correction Fact 0.7 Hole Quantum Potential Correction Fact 0.7 Temperature Factor for Cn 0 Temperature Factor for Cp 0 recombination Coefficients Kais assumed that B(T) = Maximum number of iterations 500 Basic mesh step for thin layers (nm) 0.1 1 Have no temperature Boundary mesh step (nm) 0.01 Mesh refinement factor 2 2 Keep default values Mesh step (nm) 0.05		Quantum potential (C
temperature here Quantum Potential Model Yes Electron Quantum Potential Correction Fact 0.7 Hole Quantum Potential Correction Fact 0 Temperature Factor for B -1.5 Temperature Factor for Cn 0 Temperature Factor for Cp 0 Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.01 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.001 Mesh refinement factor 2	_	model improves description
Electron Quantum Potential Correction Fact 0.7 Hole Quantum Potential Correction Factor 1 These three parameters -1.5 describe temperature 0 variation of the 0 recombination 0 coefficients. By default, it sassumed that B(T) = 3(300K) * (300/T)^(3/2) Main solver parameters Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2		the carrier transport through
These three parameters -1.5 describe temperature Temperature Factor for Cn 0 variation of the the ecombination 0 coefficients. By default, it Main solver parameters s assumed that B(T) = 3(300K) * (300/T)^(3/2) and Auger coefficients 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		· · · · ·
These three parameters Temperature Factor for Cn 0 describe temperature temperature Factor for Cp 0 variation of the the 0 coefficients. By default, it Main solver parameters 0 S assumed that B(T) = 0 0 3(300K) * (300/T)^(3/2) Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		relatively thin barri
Temperature factor for Cp 0 describe temperature variation of coefficients. By default, it Main solver parameters s assumed that B(T) = Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thick layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		(particularly, in MC
describe temperature variation of coefficients. By default, it s assumed that B(T) = 3(300K) * (300/T)^(3/2) and Auger coefficients basic mesh step for thick layers (nm) 2 Basic Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		
variation of the ecombination coefficients. By default, it Main solver parameters 500 Sassumed that B(T) = Basic mesh step for thick layers (nm) 2 Basic mesh step for thick layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		structures) by a qualita
ecombination coefficients. By default, it s assumed that B(T) = 3(300K) * (300/T)^(3/2) and Auger coefficients bave no temperature dependence Keep default values		description of the quant
Coefficients. By default, it is assumed that B(T) = B(300K) * (300/T)^(3/2) and Auger coefficients have no temperature dependence Main solver parameters Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters Mesh step (nm) 0.05		effects: tunneling
s assumed that B(T) = Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		quantum confinement.
s assumed that B(T) = Maximum number of iterations 500 Basic mesh step for thick layers (nm) 2 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		quantum commentent.
Basic mesh step for thick layers (nm) 2 Basic mesh step for thick layers (nm) 0.1 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters 0.05		With the quantum poter
S(300K) (300/T)/(3/2) and Auger coefficients nave no nave no tependence 0.01 Keep default values Spectrum solver parameters Mesh step (nm) 0.05		
Basic mesh step for thin layers (nm) 0.1 Basic mesh step for thin layers (nm) 0.1 Thin layers are lower than (nm) 5 Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Spectrum solver parameters Mesh step (nm) 0.05		model, steps of the Fe
Boundary mesh step (nm) 0.01 Mesh refinement factor 2 Keep default values Spectrum solver parameters Mesh step (nm) 0.05		levels are lower and
Mesh refinement factor 2 Keep default values Spectrum solver parameters Mesh step (nm) 0.05		carrier concentra
Spectrum solver parameters Keep default values 0.05		
Spectrum solver parameters Keep default values 0.05		distribution is more like
Keep default values Mesh step (nm) 0.05		obtained with quanti mechanical simulations.
		One can adjust the mode
for a brown and and when the device is a brown in 100		-
		5 5
You can find the Maximum number of levels in a QW 100		parameters or turn off
Minimum energy level (eV) 0.02 respective details in Spectrum broadening (eV) 0.005		model

Step 4: Running the simulation of the band diagram

Step 4 (Continued): Consistency of input data and simulation results, "locking" of the input data

In SiLENSe, all completed results are considered as a part of the project file and saved with it. To keep self-consistency between the input data and results, the project input data are "locked" as at least one result is computed.

For "locked" project, most of the buttons for editing heterostructure are disabled. Edit Layer button is enabled, while most of the layer properties appear in read-only mode, that is shown by the grey color of the text fields.

The only properties one can change for "locked" project is the Layer name, the Active region flag, and the Usp parameter (since the latter two do not effect the band diagram simulation)

To be able to edit input data, one needs to previously clear all the results by **clicking the lock button** and thus unlock the editing.

These restrictions may look strange at the first glance, but they guarantee that simulation results stored in the project file are always consistent with the input data. So, you do not need to worry about remembering what parameters the results you see correspond to, you can just check them in the project file.

Step 4 (Continued): Results tab

rostructure Global p	oarameters Materials pr	operties Results Lope	ectrum Laser parameters W	aveguide PL parameter	s	
Conduction band	Valence band	✓ Electron QP	✓ Hole QP	Electron Fermi level	Hole Fermi level	Potential
2.4E+0					Bias (V)	
2.2E+0					32	
2E+0						
1.8E+0				7		
1.6E+0	1 Note th	at each item	from the vertical			
1.4E+0 1.2E+0			ave its own list of			
1E+0						
8E-1	variables th	hat can be show	vn or hidden			
6E-1			······			
4E-1				-		
2E-1						
2.776E-16				٦		
-2E-1						
2 -4E-1						
-1E+0	2. Please, exploi					
	for viewing the re	esults				
-1.4E+0						
-1.6E+0						
-1.8E+0 -2E+0						
-2.2E+0						
-2.4E+0						
-2.6E+0						
-2.8E+0						
-3E+0						
-3.2E+0			┤╽╿╎			
-3.4E+0			/VVW	-		······
50	100 150 200	250 300 350 40	0 450 500 550 600	650 700 750	800 850 900 950	0 1000 1050 110

Step 4 (Continued): Neat tricks with zooming and moving

Step 4 (Continued): LED results

There are several ways to export the computed results in ASCII format, try the icons below and the **Export** section of the menu

LED Results

Edit Show Run Export

Export to SpeCLED button starts export of the results for its further using by SpeCLED (discussed below in details)

3	ŋ	X Q	R. 🗗 📐	i 🖳 🔤	M		Export to \$	SpeCLED	<u> </u>								
	Ν	Bias	J	Jrad	Jr	nrad	J SRH	J Auger	Jn	Jp	Jn right	Jp left	IQE	IQE QW	lnj eff	m	Peak WL
	1	2.5	3.071E-06	7.000E-08	90	1E-06	3.000E-06	1.003E-09	3.071E-06	3.071E-06	2.877E-26	1.092E-29	0.0228	0.0228	0.6482		
	2	2.6	4.713E-05	3.129E-06		QE-05	4.396E-05	4.195E-08	4.713E-05	4.713E-05	2.576E-12	3.209E-11	0.0664	0.0663	0.5929	1.4164	
	3	2.7	0.0008	0.0001		V	0.0007	1.872E-06	0.0008	0.0008	1.401E-10	1.448E-09	0.1701	0.1697	0.6714	1.3643	
	4	2.8	0.0185	0.0056			0.0129	9.964E-05	0.0185	0.0185	7.184E-09	4.393E-08	0.3005	0.2999	0.8511	1.2320	
	5	2.9	0.4711	0.1990			0.2658	0.0064	0.4711	0.4711	3.590E-07	1.013E-06	0.4223	0.4214	0.9312	1.1957	
	6	3	8.4021	4.3827			3.6067	0.4126	8.4021	8.4021	1.376E-05	2.080E-05	0.5216	0.5202	0.9662	1.3426	
	-7	3.1	70.2334	38.4757			9613	8.7955	70.2330	70.2329	0.0005	0.0004	0.5478	0.5453	0.9704	1.8217	
	8	3.2	286.0739	153.4093	1		12	59.7364	286.0701	286.0607	0.0132	0.0038	0.5363	0.5320	0.9686	2.7543	
	9	3.3	698.3882	360.5123	3		V6	190.3475	698.3679	698.0184	0.3698	0.0203	0.5162	0.5100	0.9662	4.3340	
	10	3.4	1336.5880	658.4858	6			424.3949	1336.5080	1328.1730	8.4159	0.0807	0.4927	0.4844	0.9554	5.9593	
	11	3.5	2410.0070	1071.9150	12			807.7733	2409.6980	2291.0500	118.9566	0.3090	0.4448	0.4351	0.8939	6.5617	
₽	1									-		lect the					× Close

row in the table that contains the desired bias (it will get highlighted blue) and press the button that looks like spectrum. Once the computations are complete, **Spectrum** tab is opened, see the next slide

X

Step 5: Energy levels, wave functions, spectrum

Step 5 (Continued): Emission and gain spectrum

Tutorial 1: Specifying a New Problem in SiLENSe

Step 5 (Continued): Detailed spectrum

Step 6: Preparing input data for SpeCLED

Step 6 (Continued): Preparing input data for SpeCLED

SiLENSe 4.00 Laser Edition : Untitled File Heterostructure Material properties Run Export Run	
Heterostructure Global parameter Heterostructure Global parameter Conduction band Conduction band Conduction band Conduction band Content Parameter Conduction band Content C	
	3.9 ▼ RUN spectra Export ★ Close

End of Tutorial 1

Tutorial 2 SiLENSe 5.10 & SiLENSe Laser Edition 5.10

Using SiLENSe for Modeling of Lasers: Simulation of InGaN MQW UV laser diode

Features specific to laser diodes

directly!

Specifying options specific for LDs

Computation of the waveguide modes is done independently from computation of the band diagram. However, it also uses the Heterostructure and Materials properties input data. Laser parameters tab contains a number of additional input data for simulation of LDs. They are split into two sections specific to computation of the waveguide modes and to computation of the threshold characteristics, respectively.

Waveguide solver parameters	Values
Actual first layer thickness (nm)	4000
Substrate thickness in computations (nm)	500
Substrate material	Sapphire
Substrate composition	
Mesh step (nm)	0.5

Tutorial 2: Simulation of InGaN MQW UV laser diode

Specifying parameters for computation of waveguide modes

File Heterostructure Material properties Run Export Tools Window Help Ð. **₩ >** à Heterostructure | Global parameters | Materials properties | Results | Spectrum | Laser parameters | Waveguide | PL parameters Laser parameters Laser parameters Values 1500 Cavity length (micron) 2 Stripe width (micron) **Back mirror reflectivity** 0.9 0.5 Output mirror reflectivity 1 Additional loss (1/cm) ΤE 8 Actual first layer thickness allow to specify real thickness of the first layer. (Not the reduced one that was used in the heterostructure tab) Waveguide solver parameters Values 4000 Actual first layer thickness (nm) 500 Substrate thickness in computations (nm) Substrate material Sapphire Substrate composition Mesh step (nm) 0.5

Unlike the carrier transport in LEDs, waveguide modes may depend on the substrate. As you might remember, some reduced thickness is specified for the first and last layers at the stage of the heterostructure modeling, because remote parts of homogeneous bulk n-region do not affect p-n junction and the light generation. However. whole first layer and even substrate mav be important for computation of the waveguide modes

Substrate usually has a thickness ~100 times higher than the heterostructure. However, confined modes exponentially decay in the substrate. Substrate thickness in computations should be at least 2-3 decay lengths

To choose the substrate material, click in the respective input field. A drop-down list will appear. If the material you choose is an allow, specification of composition will be required

Waveguide solver parameters	Values
Actual first layer thickness (nm)	4000
Substrate thickness in computations (nm)	500
Substrate material	Sapphire 🔹
Substrate composition Mesh step (nm)	CdMgZnO AIN InN GaN ZnO MgO CdO Sapphire

Computation of waveguide modes

Viewing the confinement factors

<u>F</u> ile <u>H</u> et	erostructure <u>M</u> a	aterial properties	Run Export	Tools <u>W</u> indow	Help			
<u>)</u>); 🖻	▶ 🖬 ▶							
					lts Spectrum	Laser param	neters Waveguide PL pa	
Refrac	tive index and	waveguide mo	odes Far field	1				Waveguide modes
	2.6							
	1 Wa	avelength:	369	nm				2: 2.5607
(c/au) (c/au)	55							4: 2.5568
~								□ 5: 2.5538 □ 6: 2.5500
	confinement	t factors					×	□ 7: 2.5457 ☑ 8: 2.5431
Sort	T.1.1	0.41	0.4.2	0.4.2	0.44	0.45		□ 9: 2.5403 □ 10: 2.5354
Mode	Total	QW 1	QW 2	QW 3	QW 4	QW 5		11: 2.5322
TE 8	0.0226	0.0048	0.0047	0.0045	0.0044	0.0043		□ 12: 2.5274 □ 13: 2.5223
TM 7	0.0127	0.0=25	0.0025	0.0025	0.0025	0.0025		□ 14: 2.5177 □ 15: 2.5111
TM 12	0.0076	0.0014	~~15	0.0015	0.0016	0.0016		
TM 18	0.0069	0.0015	0.0015	-0014	0.0013	0.0012		☑ 1: 2.5991
TE 23	0.0063	0.0011	0.0012	0.00	00013	0.0014		□ 2: 2.5982 □ 3: 2.5967
TM 10	0.0061	0.0014	0.0013	0.0012	Dr	0.0010		□ 4: 2.5943 □ 5: 2.5913
TE 30	0.0060	0.0012	0.0013	0.0013	0.0012			□ 6: 2.5875 □ 7: 2.5842
TM 35	0.0058	0.0009	0.0011	0.0012	0.0013	0.0012		The most important parameter of the mode is
TE 14	0.0057	0.0013	0.0012	0.0011	0.0011	0.0010		$^{ abla}$ the optical confinement factor. The mode with
TM 19	0.0056	0.0010	0.0011	0.0011	0.0012	0.0011		highest optical confinement factor reaches the
TM 34	0.0055	0.0012	0.0012	0.0012	0.0011	0.0009	500 1 00~	lasing threshold first. One can see a table o
TE 22	0.0054	0.0011	0.0011	0.0011	0.0011	0.0010		 optical confinement factors by using Window > Optical Confinement Factors menu item
TE 46	0.0054	0.0011	0.0012	0.0012	0.0011	0.0008		The table can be sorted with respect to the
TM 42	0.0054	0.0012	0.0013	0.0012	0.0010	0.0007		optical confinement factor value to help find the
								mode which will provide laser generation

Viewing the far-field intensity distribution

Tutorial 2: Simulation of InGaN MQW UV laser diode

parameter added to the

total optical loss

Parameters for computation of threshold characteristics and laser output power beyond the threshold

Waveguide solver parameters	Values
Actual first layer thickness (nm)	4000
Substrate thickness in computations (nm)	500
Substrate material	Sapphire
Substrate composition	
Mesh step (nm)	0.5

5. Computations of the threshold characteristics are done with respect to a certain waveguide mode. You need to specify the **polarization (TE or TM)** and **Mode index** of the mode having highest optical confinement factor (see before how to find such a mode)

6. Solver settings for selfconsistent calculation of the stimulated recombination rate.

7. Options for using imported data on gain instead of ones taken from spectrum calculation. Rarely used option.

Computation flow in self-consistent laser model

Computation of laser characteristics

Use Run -> Single Calculation With Laser or Run -> Single Calculation With Laser menu item and specify a bias or a set of biases similarly it is done for LED calculations (see the previous tutorial).

Drift-diffusion calculations look very similar to LED calculation. The only difference is that stimulated recombination is accounted for in the QW layers.

Viewing computed laser characteristics

Bias	Power	Current	i	j rad	j stim	Gain	Loss Total	Loss AR	Loss Passive	Wavelength
(V)	(m₩)	(mA)	(A/cm^2)	(A/cm^2)	(A/cm^2)	(1/cm)	(1/cm)	(1/cm)	(1/cm)	(nm)
4	0	71.2865	2376.2180	760.8066	0	2.4419	4.7117	0.3529	0.6971	365.8416
4.05	0	98.7512	3291.7060	937.6923	0	3.3681	4.7293	0.3397	0.7279	365.1951
4.1	0	131.4426	4381.4200	1126.0720	0	4.0524	4.7421	0.3202	0.7602	364.6580
4.15	0	169.3345	5644.4840	1325.0570	0	4.7560	4.7562	0.3079	0.7866	364.3365
4.2	10.9683	201.0896	6702.9850	1532.1160	220.6082	4.6747	4.7578	0.3007	0.7954	364.2295
4.25	23.2647	233.5525	7785.0830	1743.0000	468.9319	4.7988	4.7666	0.3094	0.7955	364.3365
4.35	45.6239	306.4877	1.022E+04	2176.4920	919.2996	4.8378	4.7678	0.2950	0.8111	364.1225

Laser Characteristics window appears after the end of computations

(later one can open it by using Window -> Laser Characteristics menu item)

First tab of the window contains a table. From the "Power" column, one can see that threshold is somewhere between 4.15V and 4.2V bias or between 170 mA and 200 mA current, respectively. If necessary, one can split this interval by several bias point by running additional laser computations. Use **Export** menu to store the table as a text file. Other tabs of the window contains a number of plots and some additional values.

Similarly to LED results, the band diagram, carrier concentrations, etc. are stored in the project file. One can see them by using Laser Results window (Window -> Laser Results menu item). It works very similar to LED Results window described in the previous tutorial.

Viewing the results for threshold characteristics

Power tab contains a plot of the output power as a function of current (note that SiLENSe always assumes the linear power increase above the threshold)

Viewing the results (Continued)

Computation of threshold characteristics (old model)

ser parameters	s properties Results Spectrum Laser parameters	Waveguide PL parameters		
	Laser parameters	Values		
	Cavity length (micron)	1500		
	Stripe width (micron)	2		
	Back mirror reflectivity	0.9		
	Output mirror reflectivity	0.5		
	Additional loss (1/cm)	1		
	Polarization Running computat	ions E		
	Mode index	3		
	🖨 Stop			
	Waveguide solver parameters	Values		
		4000		
	Actual first layer thickness (nm)			
	Actual first layer thickness (nm) Substrate thickness in computations (nm)	500		
		500 Sapphire		
	Substrate thickness in computations (nm)			

Simulation results for the old laser model are similar to that for the model with self-consistent treatment of the stimulated recombination. The only difference is that laser output power beyond the threshold is extrapolated linearly by using differential quantum efficiency estimated from the threshold characteristics.

Old model for computations of threshold characteristics uses LED results of band diagram computation. In this simplified model, where is no self-consistent account of the stimulated recombination rate in the drift-diffusion model.

1. First, one needs to run computation of the band diagram and current density for a bias/current range covering the threshold bias/current.

2. Then use **Run->Laser Characteristics (Old)** menu item. During computations, the program seeks for the threshold by doing following tasks for each bias

- Computes gain spectrum and finds its maximum

- Computes the waveguide modes at the wavelength of max gain

- Computes modal gain
- Computes optical losses
- Compares gain and loss