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We have designed, simulated, and experimentally demonstrated four-colour mid-infrared (mid-IR)

Light Emitting Diodes (LEDs) integrated monolithically into a vertical structure on a semi-

insulating GaAs substrate. In order to finely control the peak wavelength of the emitted mid-IR

light, quantum well (QW) structures based on AlInSb/InSb/AlInSb are employed. The completed

device structure consists of three p-QW-n diodes with different well widths stacked on top of one

bulk AlInSb p-i-n diode. The epitaxial layers comprising the device are designed in such a way that

one contact layer is shared between two LEDs. The design of the heterostructure realising the mul-

tispectral LEDs was aided by numerical modelling, and good agreement is observed between the

simulated and experimental results. Electro-Luminescence measurements, carried out at room tem-

perature, confirm that the emission of each LED peaks at a different wavelength. Peak wavelengths

of 3.40 lm, 3.50 lm, 3.95 lm, and 4.18 lm are observed in the bulk, 2 nm, 4 nm, and 6 nm quantum

well LEDs, respectively. Under zero bias, Fourier Transform Infrared photo-response measure-

ments indicate that these fabricated diodes can also be operated as mid-IR photodetectors with an

extended cut-off wavelength up to 4.6 lm. VC 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4986396]

In the infrared absorption band, Mid-infrared (mid-IR)

radiation with wavelengths between 2 and 5 lm can be

exploited for many applications, such as gas sensing (e.g.,

for sensing CO, CO2, and CH4), process monitoring, and bio-

logical molecule detection and imaging. Single-wavelength

Mid-IR emitting Light Emitting Diodes (LEDs) based on

various technologies have been demonstrated and often com-

mercialised;1 however, a cost-effective technology able to

deliver multi-spectral mid-IR LEDs with good performance

has not yet emerged. Monolithically integrated two-colour

devices have been reported on the same chip in the visible

spectral range.2 Similar work has reported bi-colour devices

in the infrared range.3–5 Jung has demonstrated two-

wavelength tunable mid-IR LEDs grown on a GaSb sub-

strate,4 which are based on bottom (GaSb substrate) emis-

sion. Such schemes have two major disadvantages: first is

the use of a GaSb substrate, which is not available in large

formats compared to Si and GaAs; second, mechanical pol-

ishing and thinning of the substrate are required. Das6 has

reported dual-colour devices in the mid-IR and in the Long

Wave InfraRed (LWIR) range, also using a GaSb substrate.

In this study, we have grown four different mid-IR LEDs on

a Semi-Insulating (SI) GaAs substrate. These devices exploit

the variation of the quantum well width to induce a change

in the localisation of the quantized energy levels within the

well and thus produce three different wavelengths in the

mid-IR range. Previous studies7–9 showed that InSb p-i-n

mid-IR detectors grown on GaAs substrates were integrated

and addressed through underlying GaAs MESFETs.

Functionalisation of the bottom GaAs layers for switching

and addressing the multispectral LEDs has potential to

deliver cost-effective monolithically integrated arrays of

mid-IR LEDs at multiple wavelengths, without resorting to

costly, low-yield hybrid flipped chip techniques.10 In this let-

ter, we report four monolithically integrated Mid-IR LEDs,

each emitting at a different peak wavelength. The emission

of three LEDs is based on emission from a quantum well

(QW) heterostructure, whereas the fourth LED is based on a

bulk p-i-n structure which has been previously reported.7–9

The layer structure of the material used to fabricate the

LEDs is shown in Fig. 1(a). It can be seen from the layer

structure that the LEDs are designed in such a way that two

devices share at least one contact layer between them. This

is to facilitate the electrical switching of each LED indepen-

dently. The three QW-based LEDs have quantum wells

whose widths are 2 nm, 4 nm, and 6 nm. The epitaxial layers

were grown on a 300 SI GaAs wafer using a Veeco Gen III

Molecular Beam Epitaxy (MBE) system equipped with arse-

nic and antimony valved cracker sources. Te and Be were

used for the n and p-type dopants, respectively, in the

Antimonide containing layers of the device. The growth

started with GaAs buffer layers at 590 �C; the temperature

was then lowered, and an intermediate buffer layer of GaSb

was grown at 500 �C. For the growth of GaSb on GaAs,

Interfacial misfit (IMF) growth conditions were used which

favour the relief of strain between GaAs and GaSb by misfit

dislocations at the interface.11,12 This IMF technique signifi-

cantly reduces the number of threading dislocations which

propagate through the layer vertically.12 Subsequently, the

temperature was lowered down to 400 �C and 50 nm of

AlInSb were grown. The temperature was then raised by
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50 �C, and the remainder of the bulk LED device and MQW

layers were grown at �450 �C.

The LEDs were fabricated using standard photolithogra-

phy and wet etching techniques. Citric acid etchant [citric

acid: H2O2:H2O, (11:1:7)] was used to etch individual LEDs

up to 2000 nm before deposition of the metal Ohmic contacts.

The top contact of each LED has an optical window for light

emission. The side-walls of the devices were passivated with

silicon nitride (SiNx) and polyimide to minimise surface

recombination current and associated leakage. Polyimide was

also used to planarise the surface obtained after the multiple

wet etches and facilitate a smooth interconnection between

the electrodes of the LEDs and the probe and bonding pads on

the SI GaAs. A 3D schematic of the LEDs is shown in Fig.

1(b). A Scanning Electron Micrograph (SEM) image of the

completed device is shown in Fig. 1(c). The defects visible on

the surface around the mesas of the fabricated devices are

associated with threading dislocations and defects due to the

lattice mismatch at the GaAs-GaSb interface. These defects

were exposed after the wet etching of �7.5 lm Antimonide

material to reach the SI GaAs where all probe contact pads

were deposited.

The IV characterisation of all of the LEDs was carried

out by using an Agilent B201A current source, and the IV

curves for all four LEDs are shown in Fig. 1(d). Two impor-

tant parameters, ideality factor and series resistance, were

extracted using the Werner method,13 and their values are

summarised in Table I. The LEDs with quantum-well widths

of 6 nm and 2 nm show lower values of the ideality factor

but higher series resistance values. The lower values of the

ideality factor in 2 nm and 6 nm Quantum well LEDs are

associated with the lower value of leakage current. Among

all four LEDs, the 2 nm and 6 nm quantum well LEDs show

lowest dark current and hence have lower ideality factors.

The log-log scale of current-voltage indicates two regions,

labelled 1 and 2 in the left inset of Fig. 1(d). At a small for-

ward bias, the lower ideality factor value indicates the com-

petition mechanism of drift-diffusion and the recombination

process. At a larger forward bias, higher than 0.15 V, the cur-

rent is mainly limited by the series resistances effect.

The emission from the quantum wells can be tuned by

varying the well width. The emission band shifts to higher

energies by decreasing the well width.14–16 The effects of

such localisation-induced emission are simulated using the

software SiLENSe. Initially, the simulation has been done on

LEDs with a range of quantum well widths. The peak of the

emission wavelength can be tuned by changing the well

width. The quantum well widths of 2 nm, 4 nm, 6 nm, 8 nm,

and 10 nm show peak emission at 3.7 lm, 4.0 lm, 4.3 lm,

4.6 lm, and 4.8 lm, respectively, as shown in Fig. 2(a).

Figure 2(b) illustrates a typical energy band diagram of devi-

ces with quantum wells and electron blocking barrier.

The LEDs were measured with a Bruker Vertex70

Fourier Transform Infrared (FTIR) spectrometer, equipped

with a cooled InSb detector. An external pulsed current gen-

erator was used to drive the LEDs, setting the duty cycle to

50% in order to avoid Joule heating of devices. All LEDs

were mounted on a 28-pin ceramic leadless chip carrier

(LCC) and wire bonded in order to be measured. Figures

3(a) and 3(b) show the comparison of Electro-Luminescence

(EL) spectra of four LEDs, namely, bulk, 2 nm, 4 nm, and

6 nm. In the 6 nm LED, the sudden dip in emission appearing

at 4.2 lm is due to the absorption caused by atmospheric

CO2, since these LEDs are measured at ambient conditions.

The spectra shown were collected at 20 mA forward current

for all four devices. The peak of the EL spectrum shifts to a

higher wavelength from the bulk to the quantum well LEDs.

FIG. 1. (a) Layer structure design of

LEDs, (b) a 3D schematic of fabricated

LEDs, (c) the SEM of final fabricated

devices, and (d) current-Voltage meas-

urements of all LEDs at room tempera-

ture; the two insets show log-log (I-V)

where two regions are apparent and

linear forward Voltage-Current.

TABLE I. LED parameters extracted using the Werner Method.13

Parameters Bulk 2 nm 4 nm 6 nm

Ideality factor 1.31 1.22 1.25 1.12

Series resistance (X) 2.2 27 3 77
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This indicates the tunability of the wavelength of peak emis-

sion from 3.40 lm to 4.18 lm. Table II compares the experi-

mental results with the simulated emission wavelengths of

the three quantum-well LEDs: a good agreement can be

observed for all three devices. The LEDs were also measured

at zero bias to investigate the photocurrent spectra of the

LEDs and assess the possibility of using them as mid-IR

detectors. The same FTIR spectrometer (Bruker Vertex 70)

was used to measure the relative photo-response from each

device (2 nm, 4 nm, 6 nm quantum well, and bulk p-i-n

LEDs). The photo-response measurements were carried out

at room temperature and standard atmosphere with no bias

voltage. The photo-response was detected using a current

preamplifier connected to the N-doped side of LEDs, and the

response from each device was collected so that only the p

and n contacts of a single device were connected, while the

rest of the devices were under floating conditions. As it can

be seen from Figs. 3(c) and 3(d), the photo-response of the

devices covers the range from the Near InfraRed (NIR) to

the mid-IR. The cut off wavelength of the devices showed a

similar trend to the peak-wavelengths of the EL spectra [Fig.

3(d)] and varied according to the designed structure. The

FTIR photo response was measured at zero bias, indicating

that a photocurrent mechanism exists with these devices.

The distinct threshold of absorption is observed to be below

the bandgap of the Al0.2In0.8Sb barrier material indicating

absorption directly into the confined levels within the indi-

vidual quantum wells. The light absorption in the Quantum

Wells is expected to be limited due to the small number of

quantum wells; nevertheless, absorption into a quantum well

is expected to be higher than the bulk material of a similar

thickness due to the increased density of states known to

exist in low dimensional structures. In order that these con-

fined photo-generated carriers contribute to the observed

photocurrent, a mechanism for excitation into the barrier

material must exist; a possible mechanism for this could be

due thermal excitation of the confined carriers from the

quantum wells into states above or close to the barrier allow-

ing the photocurrent to be detected.17

The dependence of the emission from all LEDs on the

forward injection current is shown in Fig. 4. The LEDs

showed either a blue shift, a mixture of blue and redshift, or a

consistent red shift in wavelength with the increase in the

input injection current. The 2 nm quantum well based LED

showed a decrease in the wavelength from 3.489 lm to

3.484 lm (blue-shift of 50 nm). The 4 nm LED showed a

FIG. 2. (a) Simulated LED Under Test

(LUT) spectra with varying quantum

well widths and (b) energy band dia-

gram of the AlInSb/InSb/AlInSb quan-

tum well with the AlInSb electron

blocking barrier.

FIG. 3. (a) Electro-Luminescence

spectra of bulk, 2 nm, 4 nm, and 6 nm

LEDs at a forward current of 20 mA

and (b) peak amplitude of each LED to

highlight change in the peak position

with the quantum well width. (c) FTIR

photo response of bulk, 2 nm, 4 nm,

and 6 nm LEDs at zero bias voltage

with (d) all LEDs having different cut-

offs can have application as the mid-

IR-NIR (�1.3–4.6 lm) quantum well

detector.
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mixed trend: first a blue-shift up to 100 mA and then a red

shift up to 160 mA. The 6 nm quantum well LED showed a

slowly decreasing trend up to 100 mA of current. On the other

hand, the bulk LED showed a consistent shift of the emission

peak towards longer wavelength with any increase in the

injection current. The blue-shift in the quantum well LEDs

can be justified with the band filling effect in quantum well

devices. The mixture of blue and red-shift could be attributed

to a mixture of band filling and Joule heating effect.18 At

lower currents, the band filling dominates, but as the injection

current increases, the LED temperature rises until thermal

effects overcome band filling and an increase in wavelength is

observed. However, the band filling is only observed in quan-

tum well devices, as the bulk p-i-n LED shows a consistent

peak-wavelength red shift with the injection current increas-

ing, for any current measured. With regard to the full width at

half maximum (FWHM), a broadening can be observed for all

LEDs as the current increases, as shown in Fig. 4. The broad-

ening of FWHM can also be attributed to the heat generation

due to the same non-radiative processes which cause a red-

shift in EL. However, as previously mentioned, non-radiative

processes dominate in quantum well LEDs only at high cur-

rents, while the blue-shift in EL for lower current can be

attributed to quantum wells states being filled.19 The emission

peak broadening in 4 nm and 6 nm QW can be attributed to

well width fluctuations across individual well or well-to-well

width fluctuations arising during QW growth.20 Another pos-

sible source is the defects and spatial distribution of electrons

and holes. Such defects can originate from the strain at the

AlInSb/InSb interface, caused by increasing the well thickness

from 2 nm to 4 nm and then to 6 nm. The strain hence induces

fluctuations in confinement potential which in turn increase

broadening.15

In summary, four mid-IR LEDs based on bulk and three

quantum well were grown monolithically on SI GaAs. The

electroluminescence measurements show peak wavelength

values consistent with the well widths, while photocurrent

measurements at zero bias show the presence of photores-

ponse in the mid-IR. The EL in the range of forward currents

measured suggests that emission from quantum well devices

is due to filling and emptying of band states from the quantum

well. This is a monolithically grown layer structure integrating

four mid-IR LEDs on the same substrate. Based on current

optimization, the same concept can be applied in a range of

different material compositions to completely isolate each

wavelength. The development of a multi-substance spectro-

scopic sensor employing monolithic IR sources and detectors

is also possible with this concept. The FTIR response of LEDs

indicates viability of these devices as infrared detectors cover-

ing a range (�1.3–4.6 lm) spanning from the NIR to the mid-

IR. This wavelength range is of interest for detection of indus-

trial gases and biological molecules for identification of dis-

eases. The concept of a monolithic LEDs array exploiting an

integrated switching device has great potential for applications

in single chip multiple gas detections and electronically con-

trolled multispectral infrared source/detector. The growth on

SI GaAs wafers paves the way for switching architectures.
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