STREEM: <u>STRain Engineering in Electronic Materials</u> InGaN Edition

2014 STR Group

What is the best heterostructure design?

p+-GaN contact layer
p-AlGaN cladding layer
InGaN/GaN MQW
n-GaN cladding layer
buffer layer
sapphire

Device simulations can be used to answer the question

Modeling of LED operation

- **✓ Band diagrams**
- √ Carrier concentrations
- √ Electric field
- √ Rrad, Rinonrad, IQE
- √ Emission spectra

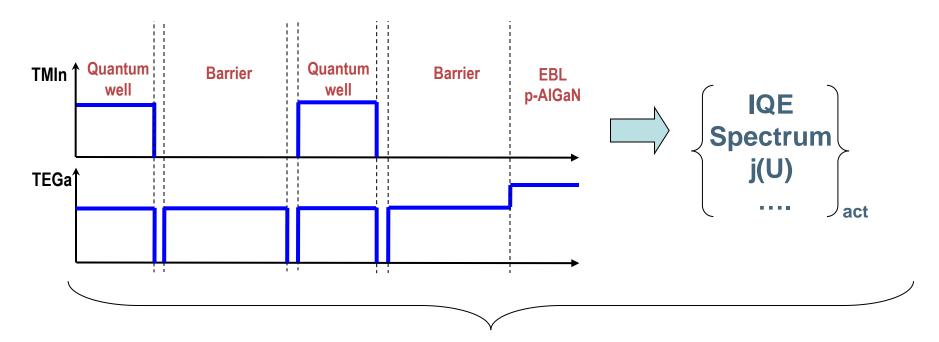
 N_{MQW} , X_{In} , δ_{QW} , N_A ,

Over and over again to find the desirable structure design

Number of QWs
Indium content
QW thickness
Doping level

IQE Spectrum j(U)

des


Desirable design

Desirable characteristics

Let's try to grow the heterostructure

Recipe for the structure growth

However, there is a difference between desirable and actual characteristics

What is the reason?

Main origins of the difference between desirable and actual heterostructures

✓ Actual composition profile across the heterostructure

✓ Dislocation density

✓ Strain profile and relaxation degree in the structure

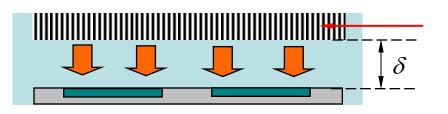
Concept of simulations

Input

- Type of MOCVD reactor
- Recipe

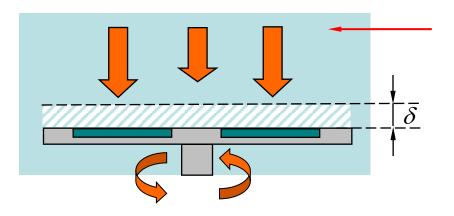
STREEM InGaN

- Model of growth and indium segregation
- Model of epitaxial stress relaxation
- Dislocation dynamics model
- Effect of strain on indium incorporation

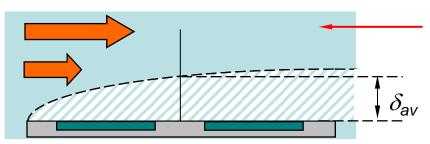


Results

- Indium composition profile
- Strain distribution
- Dislocation density and distribution



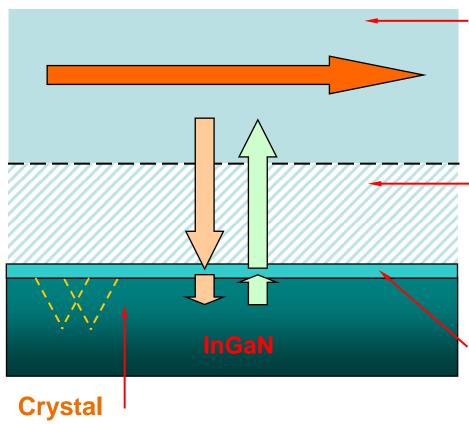
Diffusion boundary layer in typical MOCVD reactors


Close Coupled Showerhead

 Boundary layer has insufficient place to form, diffusion occurs through the fixed gap

Rotating Disk Reactor

 Narrow rotation boundary layer is formed due to the dominant susceptor rotation



Horizontal/Planetary Reactor

 Non-uniform wall boundary layer is formed due to the dominant gas flow

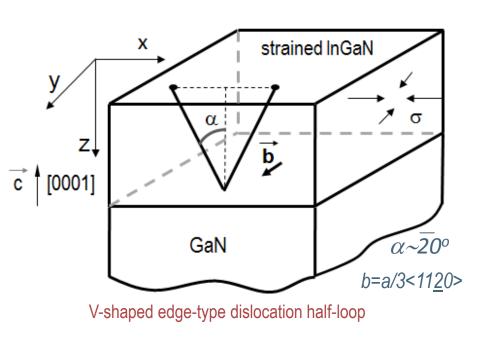
Approach to unsteady modeling of InGaN/GaN MOCVD

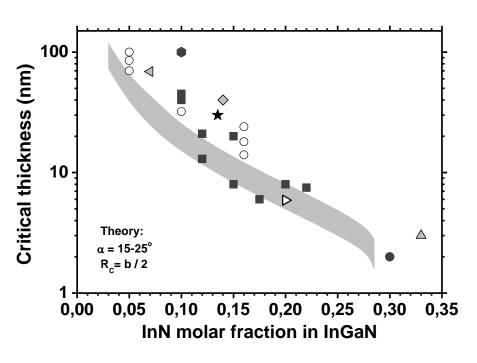
- Unsteady formation of composition profile in InGaN/GaN
- Generation of dislocations

Gas flow core

Unsteady supply of precursors
 TMIn, TMGa, TEGa and NH₃ with carrier N₂ and H₂

Diffusion boundary layer


 Diffusion transport of gas species to/from the interface


Adsorbed layer

- Unsteady balance of adsorbed atoms In, Ga, N, H
- Mass exchange with gas (adsorption/desorption)
- Mass exchange with crystal (incorporation/decomposition)

(0001) InGaN/GaN: critical layer thickness

V-shaped Dislocation half-loops:

- are generated at the growth surface and frequently climb down to the InGaN/GaN interface
- are observed on both sapphire and bulk GaN substrates
- present in thick layers with low x_{ln} and MQWs of various compositions
- density is order/orders of magnitude higher than the TD density in underlying GaN

Study of composition profile in LED structures

MOCVD

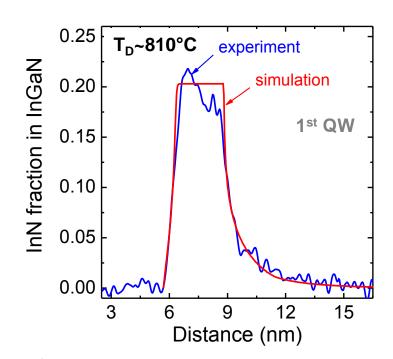
Microscopy

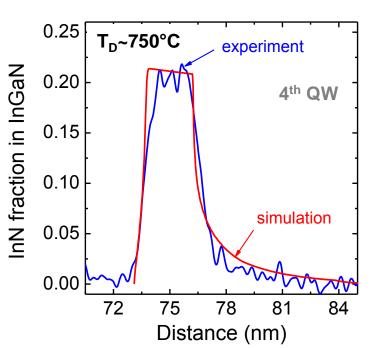
MQW structure with different temperatures after QW

Characterization:

- Dark-Filed Electron Holography
- High Resolution TEM

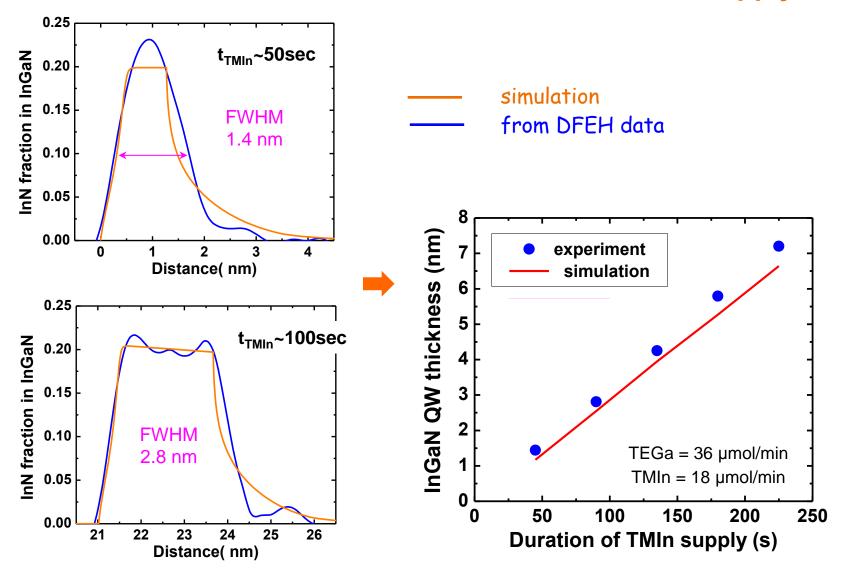
Simulation:


· STREEM InGaN


desorption of adsorbed In ramping

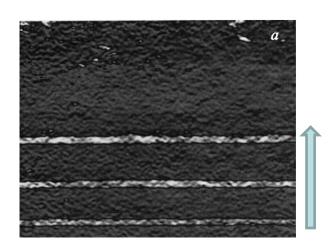
barrier growth

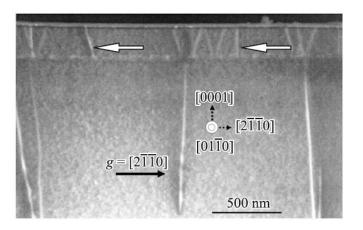
5 periods


Indium profile vs barrier temperature

Effect of TMIn supply duration

Strain relaxation in MQW LED structure

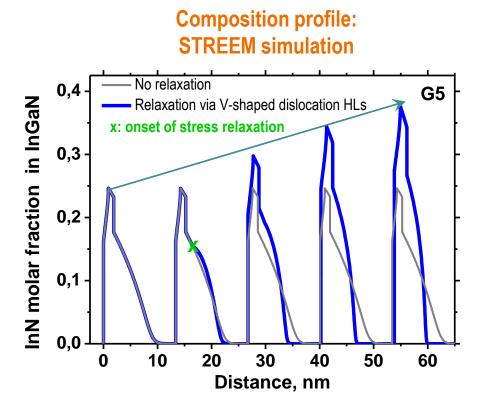

loffe Institute


MQW structure with strain relaxation: experiment

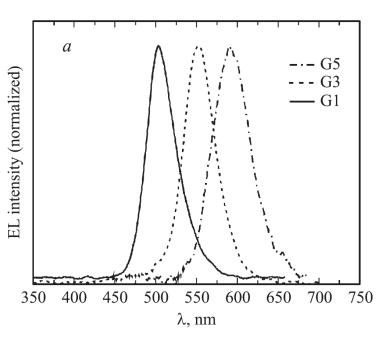
MQW structure: Sakharov et al., Semiconductors, 43/6, 841 (2009)

- ✓ Structure with different number of QWs have been grown: one QW (G1) three QWs (G3) five QWs (G5)
- ✓ Indium content increases with the number of QWs
- ✓ Wavelength increases with the number of QWs
- ✓ Generation of additional dislocation half-loops in the active region.

Distribution of deformations that confirms increase of the In content with the number of QWs



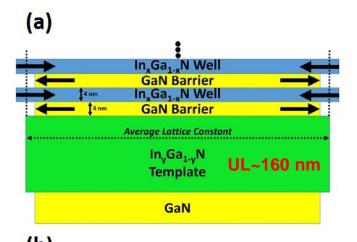
TEM image that confirms formation of new dislocations in the active region



LED structure: composition and wavelength

- wavelength/In content increases with the number of QWs: G1 G3 G5
- for the structure with 3 QWs, relaxation seems to occur in the 2nd /3rd QWs

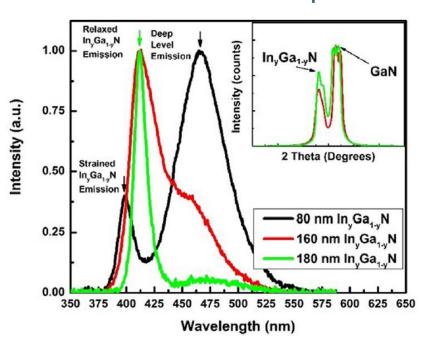
Shift of the EL wavelength with the number of QWs


Increase in the indium content due to partial stress relaxation agrees with the corresponding increase of the measured wavelength for the structures G1, G3, and G5

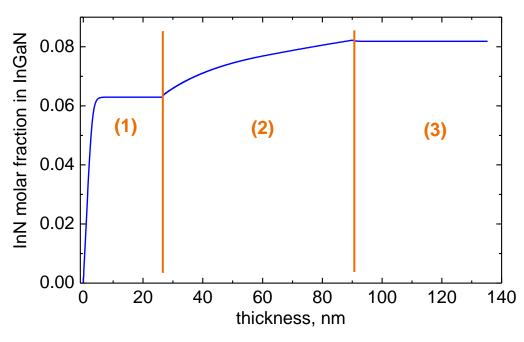
Strain-balanced InGaN/GaN MQW

NC STATE UNIVERSITY

Strain balanced MQW structure


$$(a_{UL} - a_{barrier})h_{barrier} = (a_{QW} - a_{UL})h_{QW}$$
$$h_{barrier} = h_{QW} \Longrightarrow x = 2y$$

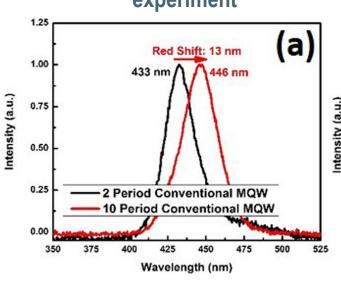
- ✓ In_xGa_{1-x}N MQW structure was grown directly on GaN buffer or with the use of In_yGa_{1-y}N underlayers (ULs)
- ✓ Strain balance by adjusting the QW/barrier width and UL/QW composition
- √ Structures with x=0.16/y=0.08 and x=0.22/y=0.11
- ✓ Thick UL to provide its relaxation

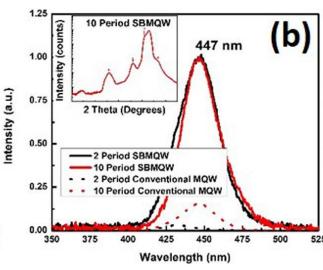

Underlayer relaxation

relaxation of InGaN UL: experiment

80 nm thick UL: still partly stressed 160nm/180 nm thick ULs: fully relaxed

relaxation of InGaN UL: STREEM modeling


(1): no stress relaxation, X_{In}~const; CLT~30 nm
 (2): stress relaxation, X_{In}~varied
 (3): relaxed layer, X_{In}~const


160 nm thick InGaN underlayer (y=0.08) is fully relaxed

MQW composition and relaxation

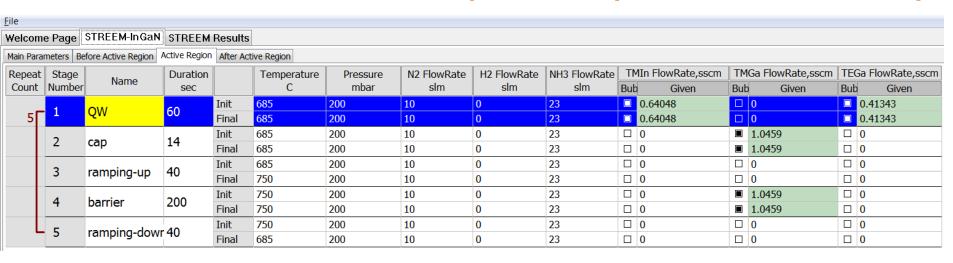
experiment

STREEM modeling

- Increased indium incorporation in 10 period conventional MQW due to relaxation
- Uniform indium composition and no relaxation for strain-balanced MQW (SBMQW)

STREEM-InGaN operation: transport model

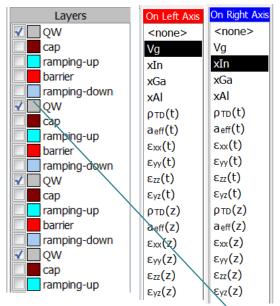
Reactor Transport Model						Reactor Model				
Fixed diffusion layer thickness					Close coupled showerhead					
 Calibration on thick GaN layer growth rate 					Horizontal/planetary reactor					
Calibration on average InGaN growth rate and composition					 Rotating disk reactor 					
Temperature	Pressure	N2 Flow Rate	H2 Flow Rate	NH3 F	H3 Flow Rate		Ga Flow Rate,µ	Reference Growth		
С	Torr	slm	slm	S	slm		Given	Rate,µm/h		
1000	75	0	5	3			130,01	3		

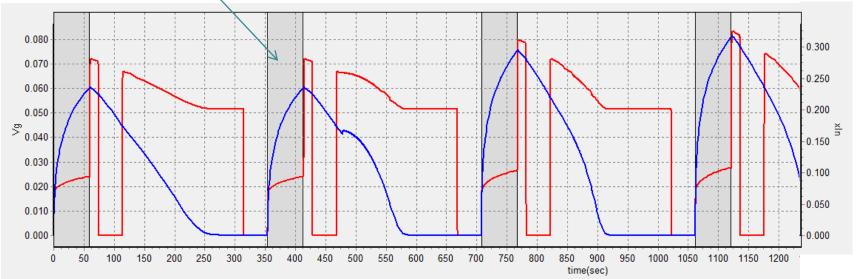

✓ Calibration on thick GaN growth rate: the user needs to specify only once (i) reactor type (ii) process parameters and growth rate for thick GaN – this information is normally well known.

Other available options:

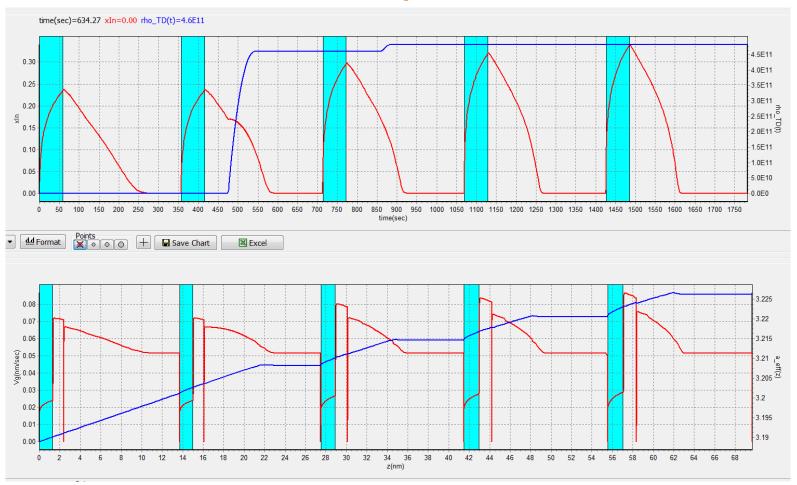
- ✓ Fixed diffusion layer thickness: may be used for fine tuning in case the well/barrier thickness/composition are known with high accuracy
- ✓ Average growth rate and composition may be specified for each stage in the active region

STREEM-InGaN operation: specification of the recipe




- ✓ Conventional parameters: duration, temperature, pressure, flow rates of precursors and carrier gas;
- ✓ Linear variation of process parameters within one stage is allowed;
- ✓ Ability to group several stages that are repeated more than once in the recipe;
- ✓ Graphical representation of the recipe for quick checking

STREEM-InGaN operation: visualization of the results



- ✓ List of process stages is available, stages with the same name are associated with a unique color;
- ✓ One or several stages can be selected to highlight them on the plot;
- ✓ Selection of the variable and its label format for the left and right axis;
- √ Point probe time(sec)=1720.9 Vg=0.037769 xIn=0.077614

STREEM-InGaN operation: visualization of the results

- ✓ growth rate, composition, effective lattice constant, dislocation density, and strain tensor components vs time and thickness
- ✓ export of the results into Excel sheet for further analysis and processing
- ✓ import of the results within SiLENSe software for the modeling of device operation

Summary

STREEM-InGaN may be used to analyze:

- influence of the process parameters on indium incorporation into the quantum wells;
- composition profile in the active region of the heterostructure;
- strain distribution in the active region by both modifying the operating parameters and modifying the structure;
- onset of stress relaxation via formation of dislocations;
- evolution of the composition, strain, and dislocation density