Diffusion boundary layer in typical MOCVD reactors

Close Coupled Showerhead

• Boundary layer has insufficient place to form, diffusion occurs through the fixed gap

 δ_{av}

Rotating Disk Reactor

 Narrow rotation boundary layer is formed due to the dominant susceptor rotation

Horizontal/Planetary Reactor

 Non-uniform wall boundary layer is formed due to the dominant gas flow

Approach to unsteady modeling of InGaN/GaN MOCVD

Crystal

- Unsteady formation of composition profile in InGaN/GaN
- Generation of dislocations

Gas flow core

• Unsteady supply of precursors TMIn, TMGa, TEGa, and NH_3 with carrier N_2 and H_2

Diffusion boundary layer

• Diffusion transport of gas species to/from the interface

Adsorbed layer

- Unsteady balance of adsorbed atoms In, Ga, N, and H
- Mass exchange with gas (adsorption/desorption)
- Mass exchange with crystal (incorporation/decomposition)

(0001) InGaN/GaN: critical layer thickness

V-shaped Dislocation half-loops:

- are generated at the growth surface and frequently climb down to the InGaN/GaN interface
- are observed on both sapphire and bulk GaN substrates
- present in thick layers with low x_{in} and MQWs of various compositions
- density is order/orders of magnitude higher than the TD density in underlying GaN

A.V. Lobanova et al., Appl. Phys. Lett. 103 (2013) 152106

File																																																												
Welcome Page	STREEM-InGaN	STREEM Results																																																										
Main Parameters	Before Active Regi	on Active Region	After Active Region																																																									

- 1. "No Relaxation: is pseudomorphically grown on the underlying layer (GaN by default).
- 2. "V-dislocations": Stress relaxation in the InGaAIN/GaN active region via formation of V-shaped dislocation half-loops is considered.
- 3. only the growth rate of the layers in the before(n-GaN) and after active region(p-GaN) is automatically caculated. other units is not automatically caculated.
- 4. "Standard": ignoring surface site blocking with adsorbed indium
- 5. "Site Blocking": considering surface site blocking with adsorbed indium
- 6. "No segregation": the nominal composition profile without 'In' segregation
- 7. "Reference Growth Rate, um/h": is used to estimate the boundary layer thickness at the stage of thick GaN growth.

User can input the average growth rate of thick GaN layer in user's reactor configuration.

				Main Paran	neters				
Relaxation M 1. No relaxat 2. V-dislocat	odel tion ions	Units Temperatur Pressure 3. Growth Rate Group III Flo	e C Torr e µm/h		egregatio Stand Site B No Se	on Mo lard lockin grega	odel Ig ation		
Reactor Tran A. Tixed diffu B. Calibration C. Calibration	nsport Model usion layer thio n on thick GaN n on average	ckness I layer growth rate growth rate and com	position	Reactor M Close o Horizon Rotating	odel oupled sh Ital/plane g disk rea	nower tary r actor	head reactor		
Temperature C	Pressure Torr	N2 Flow Rate	H2 Flow Rate	e NH3 Flov sin	w Rate n	TN Bub.	1Ga Flow Rate,µmol/min Given	7. R	eference Growth Rate,µm/h
1000	75	0	5	3			130.01	3	
٠ 🗌					22			\sim	

A.: to specify directly the boundary layer thickness for each stage in the active region ==>For fine tunning in case the well/barrier thickness/composition are known with high accuracy!

- B.: Since the boundary layer thickness is computed differently for different reactor types.
- C.: To have to specify an average growth rate and composition for each layer in the active region.
 - STREEM utilizes the partial GaN growth rate [VgGaN~(1-XIn)*VgInGaN]
 - ==> Should be specified for each stage in the active region

- -

F^fF Font

STREEM-Inc	GaN 2.0) C:\Pro	gram Files (x8	6)₩STR IP Holding	STREEM-InGaN Edition	n 2.0₩Examples₩Exa	mple6 \	Lekhal_APL_2	2015_A3	.stm				
File														
Welcome Pa	age	STREEM	-InGaN STR	REEM Results										
Main Parame	eters	Before A	ctive Region	Active Region A	fter Active Region	o-GaN)								
	l (r	-GaN)		1	Thickness characteristics	s]		C	omposition	1	Dislocation density		
Repeat	N	Stage	Name	Thickness,nm	Duration,sec	Growth rate,µm/h		AIN		GaN	InN	1/cm ²	2. St	ress state
Count		amber		Calc Given	Calc Given	Calc Given	Calc	Given	Calc	Given	Calc Given	Inheri Given	Used a,Å	Used Re
	1		n-GaN	() 10	0 540	0.066667	0	0	U I	1		1e+9	③ 3.189	
E	Sefore	e Active	e region"(n-	GaN) and "Af	ter Active region"	(p-GaN) 탭의 입	력 방법	3						
1.	Dislo	ocation	density: n-	-GaN의 첫번째	layer에서 반드시 ?	정의해야함, 그리	고이	후 layers에	서는 성	상속(inheri	it) 선택 하거나 측	정값이 있을 경우	직접 입력함	
2.	Stre	ss state	: lattice mis	smatch와 strai	n 계산시 이값을 부	차적으로 사용하	기위	해서 Active	e reai	on아래에 9	있는 laver의 latti	ce constant를 정	의해야함	
	- 1 at	ttice co	nstant: AIN	(3 112A) GaN	(3 189A) InN(3 5	44)					-	2.0		
	D		a damaa 14		거지사소이 취재이		A 71 7							
	- Re	laxation	n degree: 1	.: 직전 layer의	격자성구와 연재의	layer의 격사성*	∓ 71 €	같다는 의미						
	a(eff./cur	rent)-a(eff.	/previous)=a(k	oulk/current)-a(eff	./previous), a(bi	ulk):fu	illy relaxed	:를 의	미함				
참	고,: 6	Before//	After Active	e region 탭을 입	입력하지 않는 경우	"The Active reg	jion" 원	P Thick re	axed	GaN위에	성장되는 것으로	가정함.		

🔁 Insert After

📑 Move Up 📑 Move Down 🖺 Copy

Paste Export to Excel

Run Solver

[{≣ Repeat Count] [■ Append <Ctrl+Enter>] ■ Delete] ■ Insert Before]

		-	x
lax.Degree			
2			

STREEM-InGal STREEM Results Main Parameters Before Active Region Active Region Active Region Active Region Active Region Mare Active Region<	File																	
Main Parameters Before Active Region Active Region After Active Region After Active Region After Active Region After Active Region Mane Duration sec Mane Duration sec Mane Duration sec Mane Bub Given Bub	Welcome Pag	e STREEM	I-InGaN STR	REEM Results														
Repeat Count Stage Number Name Duration sec Temperature C Pressure Torr N2 FlowRate sim NH3 FlowRate sim MH3 FlowRate s	Main Paramete	ers Before A	ctive Region	Active Region	After Active	Region												
1 QW 135 Init 715 350 4 0 4 0 2.3266 6.0037 0	Repeat Count	Stage Number	Name	Duration sec		Temperature C	Pressure	N2 FlowRate	H2 FlowRate	NH3 FlowRate	TMIn Bub	FlowRate,µmol/n	TMGa	FlowRate,µmol/r	TEGa Bub	FlowRate,µmol/m	TMAI (Flo
10 -		1	ow	135	Init	715	350	4	0	4		2.3266		6,0037		0		C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	-	· · · ·	100	Final	715	350	4	0	4		2.3266		6,0037		0	무	0
3 Ramping 100 Init 715 350 4 0 4 0		2	GaN cap	180	Init Final	715 715	350	4	0	4		0		6,0037 6,0037		0		0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		3	Ramping	100	Init	715	350	4	0	4		0		0		0		0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u>,</u>			Final	940	350	4	0	4	+	0		6 0037	井	0	+	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		4	AlGaN barrie	r 477	Final	940	350	4	0	4		0		6,0037		0		1
Solution of the state Solution of the state Final 940 350 4 0 4 0 6 6,0037 0		E	CaN barrier	200	Init	940	350	4	0	4		0		6,0037		0		C
6 Ramping 100 Init 940 350 4 0 4 0		5	Gan Darrier	390	Final	940	350	4	0	4		0		6,0037		0		0
Final 715 350 4 0 4 0 0 0 0 0 0 0 0 0		6	Pamping	100	Init	940	350	4	0	4		0		0		0		0
		0	Kamping	100	Final	715	350	4	0	4		0		0		0		0

_Modeling of the stress and compsotion profile is actually performed for the active region, so thick InGaN layer or superlattice can be considered in the "Active region" tab.

-복수선택: "Shift +left mouse"

-반복을 원하는 레이어들을 "shift+left mouse"클릭-->"Repeat count"클릭 --->반복횟수 입력

-Copy명령 실행시 Stage name은 복사되지 않고 공란으로 처리됨

-Process parameter 입력시 stepwise(계단형)형태의 변화를 피하고 slope을 주어 입력함(리액터 inlet에서의 gas composition의 stepwise 변화가

있더라도 growth 표면에서는 gas species interfusion때문에 smoothe 해지기 때문)!

예를들면, 사용자 가이드 Fig.7.3 참고

"Relaxation Model" option과 dislocation density입력

-"main paramters"탭에서 "V-shaped dislocation"을 선택한 경우, active region의 dislocation density가 자동으로 계산되기 때문에 입력할 필요가 없음

-"main paramters"탭에서 "No Relaxation" 이 선택된 경우 active region 탭의 모든 layer에 직접 입력하거나 이전 layer에서 상속 받아야함.

⁻ 만약, Before Active region(n-GaN)탭에서 어떤 layer도 정의되지 않았다면 Active region의 첫번째 layer에서 dislocation density를 정의해야함

- 🗆 X