Simulation tools for design of advanced LEDs and modeling of related technologies

STR Group www.str-soft.com

Outline

- **Software package for design and optimization of advanced LEDs. SimuLED™ software package**
- **Optical and Thermal Management of LED Lamps. SimuLAMP™ software package**
- **Growth of Group-III nitrides by MOCVD. Virtual Reactor™ Nitride Edition**
- **Modeling of the characteristics of III-Nitride device heterostructures grown by MOCVD. STREEM™-InGaN software**
- **Stress and dislocation behavior and wafer bowing in GaN growth on Silicon. STREEM™-AlGaN software**
- **Growth of GaN by HVPE. Hydride Epitaxial GaN Simulator (HEpiGaNS™) or VR HVPE**

Software package for design and optimization of advanced LEDs

SimuLED™ software package

SimuLED™ package

https://www.str-soft.com/devices/simuled

 \Box

SiLENSe™: module for designing of LED/LD heterostructure

SiLENSe™ input parameters

- ✓ **Number of layers**
- ✓ **Layer thickness**
- ✓ **Layer composition (including graded composition)**
- ✓ **Polar, non-polar, and semi-polar orientations**
- ✓ **Layer doping**
- **Layer degree of relaxation**
- ✓ **Temperature**
- **Dislocation density**

Structure specification

SiLENSe™: module for designing of LED heterostructure

Parameters computed with SiLENSe™

- ✓ **Band diagram and electric field**
- **Carrier concentrations**
- ✓ **Carrier fluxes and leakage**
- \checkmark R_{rad}, R_{SRH}, R_{Auger}, \to IQE
- ✓ **Energy levels in QWs**
- ✓ **Emission and gain spectra**
- ✓ **Simulation of optical excitation (PL)**

SpeCLED™: current spreading and heat transfer

SpeCLED™ input parameters

- ✓ **Chip design**
- **Material properties**
- ✓ **Surface passivation**
- ✓ **Heat sink specification**
- **Forward current**
- ✓ **Characteristics of active region: j(U^b ,T), IQE(U^b ,T)**

SpeCLED™: current spreading and heat transfer

jz.[A/cm^{^2}]

Parameters computed with SpeCLED™

- ✓ **3D distributions of the electric potential, current density, and temperature in the whole die**
- ✓ **2D distributions of the p-n junction bias, current density, IQE, and temperature in the active region plane**
- ✓ **I-V characteristic**
- ✓ **Series resistance**
- **EQE and WPE**

SpeCLED™/RATRO™ coupling

RATRO™: Analysis of optical characteristics of LED dice

RATRO™ input parameters

- ✓ **Chip design**
- ✓ **Bulk optical properties**
- ✓ **Surface optical properties**
	- ✓ **Mirrors**
	- ✓ **Multiple layer coatings**
	- ✓ **Surface patterning**

RATRO™: 3D ray-tracing analysis of optical characteristics of LED dice

RATRO™ capabilities and computed parameters

- ✓ **The effective reflection, absorption and transmission coefficients of n- and p- electrodes are calculated by the program accounting for the interference in the multilayer contact**
- ✓ **Patterned surfaces are supported**
- ✓ **Light extraction efficiency from an LED die is predicted**
- ✓ **Far-field and near-field emission patterns**
- ✓ **Light polarization distribution**
- ✓ **Various die configurations, including shaped substrate are supported**
- ✓ **Consideration of non-uniform electroluminescence intensity distribution over the active region plane Competitiv Advantage**

Optical and Thermal Management of LED Lamps

SimuLAMP™ software package

Output from SimuLAMP™ modeling

- **Solution of coupled optical/thermal problem in a complex package geometry accounting for heat release in the LED chip and heat release in an encapsulant due to light absorption and Stokes shift**

- **Advanced model of light conversion in individual phosphor and phosphor mixtures (for white-light LED lamps)**

- **Support of single- and multichip package configurations including RGB LEDs**

- **Simulations of the electrical circuit used in operation of multi-pixel LED array**

- Analysis of package operating in DC/AC/Quasi-CW modes

3D LED with photonic crystal 475 4.25
 4.25
 4.12 \bullet 20

$-2700K$ 60 W Incandescent 3500 K 13 W Flugrescent 5500 K 13 W Fluorescent

Characteristics of LED lamps predicted by SimuLAMP

- **Temperature distribution over the LED package, thermal resistance**
- **Near-field and far-field radiation patterns**
- **Output light spectrum, color uniformity**
- **Optical losses in the package**
- **CRI, CCT and other characteristics of whitelight LEDs**

Growth of Group-III nitrides by MOCVD

Virtual Reactor Nitride Edition

Modeling approach

Input parameters:

- **Reactor geometry**
- **Operating temperature and pressure**
- **Gas flow rates**

Available precursor gases:

- **MO source: TMGa, TEGa, TMAl, TMIn**
- **Carrier gas: NH³ , N² , H²**
- Dopant source: SiH₄, MgCp₂

Modeling of MOCVD growth of the following materials:

- **GaN**
- **AlN**
- **AlGaN**
- **InGaN**
- **InAlN**

Reactor geometry and temperature

Planetary reactor

Rotating disk reactor

Contours based on CFD and chemistry modeling: (a) Temperature and streamlines, (b) adducts (TMAl:NH3) mass fraction, (c) particle density (kg/m3)

Significant improvement in process time (~50%) and source efficiency is achieved during AlN/AlGaN superlattice HEMT structure growth on 200mm Si substrate while maintaining the desired material quality

AlN growth in 6x8" Taiyo Nippon Sanso UR 26K reactor

Modeling allows control of AlN growth rate value and growth rate uniformity over the 8" wafer

Data: A. Ubukata et al., Phys. Status Solidi C 1-4 (2013)

|loffe
|Institute **Carbon incorporation in GaN**

Carbon is the impurity commonly used for fabrication of high-resistance GaN buffer layers in high power electronic devices. On the other hand, carbon in GaN is undesirable in some applications.

The rate of carbon incorporation depends on many factors and has to be controlled accurately.

Data: W. Lundin et al, ICMOVPE-2018

Optimization of Carbon in 8'' GaN growth

Carbon concentration

- **Carbon incorporation rate** ▶ **depends on many parameters**
- **It is very difficult to achieve** \blacktriangleright **good carbon uniformity for large-diameter wafers**
- **Advanced optimization of** \blacktriangleright **growth recipe is necessary**

Simulations allows to find the growth conditions providing appropriate carbon concentration in the growing GaN layer and uniform carbon concentration over the surface of 8" wafer

Modeling of the characteristics of III-Nitride device heterostructures grown by MOCVD STREEM-InGaN software

What is the best heterostructure design?

Let's try to grow the heterostructure

Recipe for the structure growth

However, there is a difference between desirable and actual characteristics

What is the reason?

✓ **Actual composition profile across the heterostructure**

✓ **Dislocation density**

✓ **Strain profile and relaxation degree in the structure**

Concept of simulations

Input

- **Type of MOCVD reactor**
- **Recipe**

STREEM InGaN

- **Model of growth and indium segregation**
- **Model of epitaxial stress relaxation**
- **Dislocation dynamics model**
- **Effect of strain on indium incorporation**

Results

- **Example 1 Indium composition profile**
- **Strain distribution**
- **Dislocation density and distribution**

Diffusion boundary layer in typical MOCVD reactors

Close Coupled Showerhead • **Boundary layer has insufficient place to form, diffusion occurs through the fixed gap**

Rotating Disk Reactor • **Narrow rotation boundary layer is formed due to the dominant susceptor rotation**

Horizontal/Planetary Reactor • **Non-uniform wall boundary layer is formed due to the dominant gas flow**

Approach to unsteady modeling of InGaN/GaN MOCVD

Crystal

• **Unsteady formation of composition profile in InGaN/GaN**

• **Generation of dislocations**

Gas flow core

• **Unsteady supply of precursors TMIn, TMGa, TEGa and NH³ with carrier N² and H²**

Diffusion boundary layer • **Diffusion transport of gas species to/from the interface**

Adsorbed layer

• **Unsteady balance of adsorbed atoms In, Ga, N, H**

- **Mass exchange with gas (adsorption/desorption)**
- **Mass exchange with crystal (incorporation/decomposition)**

(0001) InGaN/GaN: critical layer thickness

V-shaped Dislocation half-loops:

- *are generated at the growth surface and frequently climb down to the InGaN/GaN interface*
- *are observed on both sapphire and bulk GaN substrates*
- *present in thick layers with low xIn and MQWs of various compositions*
- *density is order/orders of magnitude higher than the TD density in underlying GaN*
- **A.V. Lobanova et al., Appl. Phys. Lett. 103 (2013) 152106**

European Union FP7 Project

Study of composition profile in LED structures

MOCVD MICROSCOPY

MQW structure with different temperatures after QW

A. Segal et al., presented at IWN-2014, August 24-29, Wroclaw, Poland (2014) Copyright © 2022 STR Group, Inc. All rights reserved www.str-soft.com

Effect of TMIn supply duration

Strain relaxation in MQW LED structure

Ioffe Institute

MQW structure with strain relaxation: experiment

MQW structure: Sakharov et al., Semiconductors, 43/6, 841 (2009)

- ✓ **Structure with different number of QWs have been grown: one QW (G1) – three QWs (G3) – five QWs (G5)**
- ✓ **Indium content increases with the number of QWs**
- ✓ **Wavelength increases with the number of QWs**
- ✓ **Generation of additional dislocation half-loops in the active region**

Distribution of deformations that confirms increase of the In content with the number of QWs

TEM image that confirms formation of new dislocations in the active region

LED structure: composition and wavelength

- *wavelength/In content increases with the number of QWs: G1 - G3 - G5*
- *for the structure with 3 QWs, relaxation seems to occur in the 2nd /3rd QWs*

Increase in the indium content due to partial stress relaxation agrees with the corresponding increase of the measured wavelength for the structures G1, G3, and G5

A.V. Lobanova et al., presented at ICNS-10, August 25-30, Washington, USA (2013)

Stress and dislocation behavior and wafer bowing in GaN growth on Silicon

STREEM-AlGaN software

Modeling approach

Input parameters:

- **Type of the reactor**
- **Thickness and diameter od the substrate**
- **Properties of each layer in the stack: composition, doping, thickness**
- **Growth conditions**

STREEM predictions:

- **Curvature evolution of curvature at the stages of heating, growth, and cooling**
- **Stress relaxation and dislocation dynamics**
- **Crack formation during the growth and after cooling of the structure**
- **Influence of the process parameters on the through-wafer temperature drop and its contribution to the structure bow**
- **Stress state in the particular layers via processing of in-situ curvature data**

Si (111) C:GaN SLS AlN/Al0.1GaN 103 periods AlGaN u-GaN AlGaN barrier SiN passivation AlN ✓ **GaN-on-Si based HEMT epi-wafers, grown in production-scale reactor** ✓ **AlN/AlGaN superlattice buffer Japanese Journal of Applied Physics 58, SCCD26 (2019) GaN-on-Si based HEMT epi-wafers with AlN/AlGaN superlattice buffer, grown in production-scale reactor**

Stop-growth experiments

Modeling reproduces stop-growth experiments designed to evaluate the effect of individual buffer parts on RT bow:

- **RT bow is predicted for various thickness and composition of the stack**
- **Plastic relaxation in silicon wafer is not expected**

UN

Curvature evolution

• **Adjustment of the recipe provides almost zero curvature after cooling**

• **Linear variation of the curvature for the most part of the SL: weakly changing averaged stress**

UN

Modeling Solutions for Crystal Growth and Devices

Analysis of the stress and TDD evolution in the SL

Computed temporal variation of the stress and dislocation density (the inset shows the details of the stress evolution in the bottom part of the SL)

- ✓ **AlGaN/AlN superlattice is effective in filtering the dislocations, whose density keeps reducing in the C:GaN and u-GaN layers grown on top of the SL with no nucleation of new dislocations**
- ✓ **Unintentional gallium incorporation into nominal AlN layers in the SL has been identified as a factor governing bow and stress evolution**
- ✓ **Proper design of the epitaxial structure and optimization of the process parameters provides final reduction of TDD down to about 2∙10⁸ cm-2 with the good structural uniformity over 6" wafers and a residual bow below 50 µm**

UN

Growth of GaN by HVPE

Hydride Epitaxial GaN Simulator (HEpiGaNS) or VR HVPE

Modeling approach

Input parameters:

- **Reactor geometry drawn by the user or imported from CAD file**
- **Operating temperature and pressure**
- **HCl and NH³ flow rates** \blacktriangleright

MOCVD process optimization:

- **Arrangement of gas species supply into the reactor providing**
	- **High GaN growth rate** \blacktriangleright
	- **Uniform GaN growth rate distribution over the substrate surface** \blacktriangleright
- **Increase of the efficiency of the source with liquid Ga**
- **Suppression of poly-GaN deposition on the reactor side walls** \blacktriangleright

Dependence of GaN growth rate on growth conditions

Computed and experimental dependencies of the GaN growth rate on temperature and HCl flow rate are in good quantitative agreement

Optimization of GaN growth by HVPE in AIXTRON

Vertical HVPE Reactor

Phys. Status Solidi B, 1-9 (2015) / DOI 10.1002/pssb.201451609

Effect of carrier gas in hydride vapor phase epitaxy on optical and structural properties of GaN

E. Gridneva*¹, E. Richter¹, M. Feneberg², M. Weyers¹, R. Goldhahn², and G. Tränkle¹

¹ Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Straße 4, 12489 Berlin, Germany ² Institute of Experimental Physics, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany

Received 7 October 2014, revised 9 February 2015, accepted 24 February 2015 Published online 23 March 2015

Using a combination of experiments and modeling 3 mm thick 3" GaN crystal was grown without cracking

Thank you for your attention!