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E— Motivation
I

For MQW structures, conventional drift-diffusion mo del predicts a stair-
like conduction band profile with a considerable dr op of the Fermi level in
the spikes of barriers surrounding QWSs. This results in a severe over-
estimation of the LED turn-on and operation voltage s. For InGaN/GaN
MQWSs, the problem becomes more pronounced with incr ease of indium
content because of both higher band offsets and hig her piezoelectric

charges at the QW interfaces. 1
Transport mechanisms beyond drift-

diffusion that can contribute to the
enhanced carrier transport
v Tunneling through the barriers

v’ Ballistic transport

v’ Dislocation-mediated conductivity
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Quantum Effect 1.

[ Thermal assisted tunneling
] u_.
Thermal assisted tunneling seems electron U=U_.E
to be the dominant mechanism of >> >
the carrier transport in MQWs with I c
high potential barriers originated U=0
from both high band offsets and
R . . left
built-in polarization charges F, i AF,
Fnright
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Quantum Effect 1.
Thermal assisted tunneling

Analytical result for a triangular barrier

Most of electrons
tunnel here
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Quantum Effect 2:

— Quantum Confinement in QWs
O
Classical description Quantum description
of the carrier concentration of the carrier concentration
Fermi level Fermi level _
_ i Filled states
\ Filled states Energy level \
The same two-dimensional carrier concentration in a QW refers to a

different Fermi level position for classical and qu antum carrier
description.



Solution For Both Quantum Effects:
— Use of Quantum Potential
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Quantum potential accounts approximately the quantu m delocalization
of the electrons/holes in a heterostructure with th In QWs and barriers,
producing an effective band alignment used in the t ransport equations

/When the bottom of the\

guantum potential is close
to the quantum energy
level, we obtain a more
accurate value for the

/@rrier concentration %

Quantum energy level

Decrease of the potential
barrier accounts for the
thermal assisted tunneling

Classical potential

= Quantum potential




Model Verification
[ Analytical Estimation of Current Density
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Thermo-ionic current density calculated with the qu antum potential is in
very good agreement with the tunnel current obtaine d from the original
potential. This fact indicates that the quantum pot ential model provides
reasonable estimation for the tunnel current densit y.

06 v L) v L) v L) v L) v L) ~N 105 I I I I 105

: . 10°* i ier +10°

0.5 } —— Classical potential - g 10k gr;a:glirgamer {10

— Quantum potential < , T=
04} - = 10°F =300K 4 10°
G m_=0.2
S 03| Triangle barrier % 10' o - 10°
< [ d=10nm i a 10°F 10°
% 0-2 | Umax = 05 eV _ g 10'1 L 10-1
c — = -2 L . i -2
TR T= 31085 3 10_3 — Classical potential and 10_3
A Mgy =0 7 £ 107 F thermal assisted tunneling 110
0.0 £ 10" F ——Quantum potential and 410"
' s 10°F thermoionic current 410°
01 N 1 N 1 . 1 . 1 . 1 . = 10-6 1 1 1 1 1 10-6
-10 -5 0 5 10 15 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance (nm) Barrier Height U (eV)



Model Prediction

S— Band Diagram and Carrier Distribution
O
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Model Prediction
— Improvement of |-V characteristics
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Conventional drift-diffusion model overestimates th
operation voltage of MQW blue LEDs
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Use of quantum potential improves predictability of the current-
voltage characteristics for MQW blue LEDs



