SimuLED Tutorials. Part I

STR Group Inc March 2021

Complete list of tutorials

Part I

Tutorial 1: Specifying a New Problem in SiLENSe: Simulation of InGaN MQW LED Heterostructure. SiLENSe 6.3 & SiLENSe Laser Edition 6.3

Tutorial 2: Using SiLENSe for Modeling of Lasers: Simulation of InGaN MQW UV laser diode. SiLENSe Laser Edition 5.12

Tutorial 3: Specifying a New Problem in SpeCLED: Simulation of a Planar Chip.

Part II

Tutorial 4: Simulation of a Vertical Chip in SpeCLED

Tutorial 5: Visualization of SpeCLED & RATRO Simulation Results in SimuLEDView.

Tutorial 6: Geometry Troubleshooting in SpeCLED & RATRO

Tutorial 7: Simulation of the light extraction in RATRO

Tutorial 1 SiLENSe 6.3 & SiLENSe Laser Edition 6.3

Specifying a New Problem in SiLENSe: Simulation of InGaN MQW LED Heterostructure

Creating a new project for InGaN MQW heterostructure

This tutorial shows how to create a new project similar to 'MQW-example' supplied with the software, specify all necessary input data, run simulations, and prepare input data for SpeCLED. It includes the following steps:

- **Step 1:** Choosing material data and creating new project
- **Step 2:** Specification of the heterostructure layers
- **Step 3:** Specification of global parameters (like temperature)
- **Step 4:** Simulation of the band diagram, carrier concentration, carrier transport; inspecting results
- **Step 5:** Simulation of carrier energy levels, wave functions, and emission spectrum; inspecting results

Step 6 (optional): Preparing input data for SpeCLED

Step 1: Creating a new project

1. Open SiLENSe and press New button from the toolbar.

A modal window appears where the user is prompted to browse a database file (*.matprop) with materials properties.

🔄 Wurtzite.matprop

🗟 ZincBlende.matprop

2. Choose **wurtzite** database supplied with SiLENSe. It includes properties of AlInGaN alloy and 3 materials which can be used as a substrate (sapphire, SiC-6H, and SiC-4H).

Lists of available materials and alloys shows data contained in the chosen database file. **Green mark** and **red cross** indicate good and insufficient data.

3. Press **OK** to create the project.

SiLENSe comes with two databases of material properties, **Wurtzite** and **ZincBlende**. The user can edit the data contained in these databases using a separate Properties Editor (**ProEdit.exe**) and create new custom *.matprop files.

Step1 (Continued): Materials vs. Alloys in SiLENSe database

SiLENSe 6.3 Laser Edition : Untitled				- 🗆	X
ile <u>H</u> eterostructure <u>Material properties</u> <u>Run</u> <u>Export</u>	Tools Window	Help			
	2	-1			
	<u> </u>				
Heterostructure Global parameters Materials properties	Results Sp	ectrum Laser para	neters Waveguide	PL parameter	ers
Materials parameters					
Alloys Materials Materia	name AIN	•	Symmetry Wurtz	ite 🔻	
	AIN		,		
Property	InN U GaN				^
	Sapphi				
Ionization energy	SiC-6H SiC-4H				
Energy gap (T = 0 K)	eV	6.254			
Varshni parameter a	meV/K	2.45			
Varshni parameter b	к	2080			
Crystal-field splitting (Delta 1)	eV	-0.22			
Spin-orbital splitting (Delta 2)	eV	0.0065			
Spin-orbital splitting (Delta 3)	eV	0.0065			
Dielectric constant	-	8.9			
Electron effective mass along axis a	m0	\$Par (0.3414)			
Electron effective mass along axis c	m0	\$Par (0.3339)			
Heavy hole effective mass along axis a	m0	\$Par (7.6923)			
Heavy hole effective mass along axis c	m0	\$Par (3.125)			
Light hole effective mass along axis a	m0	\$Par (0.3584)			
Light hole effective mass along axis c	m0	\$Par (3.125)			
Split-off hole effective mass along axis a	m0	\$Par (3.2258)			
Split-off hole effective mass along axis c	m0	\$Par (0.2506)			~

In specification of materials properties, SiLENSe distinguishes between materials of fixed composition (like GaN, AlN, and InN) and their alloys where composition may be continuously varied with one or more degree of freedom (like $AI_xGa_{1-x}N$, $In_xGa_{1-x}N$, $AI_xIn_yGa_{1-x-y}N$). There are 3 options to specify how properties of an alloy are calculated for a certain composition: (i) linear interpolation + bowing, (ii) built-in parameterization, and (iii) custom user-defined function.

previous slide)

Step1 (Continued): Inspecting material properties

The resulting value is shown in the brackets

Step 1 (Continued): Bowing parameters and parameterization

🎉 SiLENSe 6.3 Laser Edit	- SiLENSe 6.3 Laser Edition : Untitled										×
<u>F</u> ile <u>H</u> eterostructure <u>M</u>	le <u>H</u> eterostructure <u>M</u> aterial properties <u>R</u> un <u>E</u> xport <u>T</u> ools <u>W</u> indow He <u>l</u> p										
D: D: <td< th=""><th>g paramete</th><th>ers</th><th></th></td<>									g paramete	ers	
Alloys Materials Material name AllinGaN V Symmetry Wurtzite V]				
	Property		Unit	AIN	InN	GaN	Interpolation Type	Bowing AlInN	Bowing AlGaN	Bowing InGaN	7^
Ionization energy			eV	7.22	5.75	6.54	Bowing	-1.5	0	0	
Energy gap (T = 0 K)	Energy gap (T = 0 K)			6.254	0.685	3.505	Bowing	4.8	0.5	2.5	
Varshni parameter a			meV/K	2.45	0.46	0.87	Bowing	0	0	0	
Varshni parameter b			K	2080	640	790	Bowing	0	0	0	
Crystal-field splitting (D	Delta 1)		eV	-0.22	0.027	0.01	Bowing	-0.25	-0.25	0	
Spin-orbital splitting (D	elta 2)		eV	0.0065	0.0048	0.0055	Bowing	0	0	0	
Spin-orbital splitting (D	Spin-orbital splitting (Delta 3) eV			0.0065	0.0048	0.006	Bowing	0	0	0	
Dielectric constant	constant - 8.9 14.4 10.4 Bowing 0 0 0					0					
Electron effective mass	n effective mass along axis a m0 \$Par (0.3414) \$Par (0.0660) \$Par (0.2090) \$Parameterization - -					-					
Electron effective mass	along axis c		m0	\$Par (0.3339)	\$Par (0.0650)	\$Par (0.1860	\$Parameterization	-	-	-	
Heavy hole effective mass along axis a m0				\$Par (7.6923)	\$Par (1.6949)	\$Par (1.8868)	\$Parameterization			-	

By default, most properties have **bowing** interpolation type with zero bowing parameters, that means that linear interpolation is used to calculate the property for alloy of given composition. compared to the linear interpolation. Positive bowing means decreasing of the property

It is assumed that user does not need to change properties during everyday work. Instead, it is recommended to work with the same chosen set of material properties for all simulations for self-consistency of the whole research project. When necessary, editing of materials properties to be done with **Properties Editor** tool (**PropEdit.exe**) which is not discussed in this tutorial. One can update materials properties by using **Materials Properties->Import** menu item.

Parameterization interpolation type for alloy means that the property is calculated in two steps: (i) parameters (i.e. some other material properties) involved in the parametrization equation are calculated according to the alloy composion and then (ii) the property is calculated with the equation and values of parameters calculated at step (i).

Step 2: Adding heterostructure layers

🖗 SiLENSe 6.3 Laser B	Edition : Untitled				_		\times
File Heterostructure	Material properties Run Export Tools						
道 🖻 🖬 🚺		File Heterostructure M	aterial properties Run Export Tools Win				
		道 🛥 🖪 🕨		,			
	bal parameters Materials properties R	Heterostructure Global	parameters Materials properties Results	\$			
Lavers :	, ie Thickness, nm	Layers :		Composition			
Alloys	· · · · · · · · · · · · · · · · · · ·	Alloys	> AlinGaN s, nm	Start	End	Middle	
Material		Materials	>				
	GaN	alte	rnative way				
	Sapphire						
	SiC-6H		Dopant c	oncentration (cm^	-31		
	SiC-4H		Dopant	Start	End	Middle	
1			Donors				
			Acceptors Heterostructure orientation :				
			Orientation [0001] (Ga-polar)	•			
	Heterostructure tab allow	s one to specify t	he heterostructure layers:				
	neterostructure tab allow	s one to specify t	ne neterostructure layers.				
	1. Press Add Layer buttor	n to add a new lay	ver.				
Structure visualizat	2. A pop-up menu appear	s allowing one to	o choose belween Material	s and Alloy	s. Both		
Doping Mobility	items contain submenus w	-					
	3. You can choose eithe	r Materials->Ga	N to add GaN layer or, a	Iternatively,	Alloys-		
	>AllnGaN. In the latter cas	se you will also ha	ave to specify composition as	s Al₀In₀Ga₁N.	.		
	Note that later you can als	o copy-paste exis	ting layers to create new on	es.			
	Heterostructure has to sta buffer layers should not be		yer and end with p-type la	<mark>yer.</mark> Nucleati	ion and		

Step 2 (Continued): Layer thickness and composition

Eile Heterostructure Material properties Run Export 2. You can name the layer Image: I	
🔅 🖙 🖬 🕨 🕞 🗱 🗉 dr your own convenience	
Heterostructure Global parameters Materials properties Pectrum Laser parameters Waveguide PL parameters	
Layers : Current layer parameters :	-
N Name Thickness, nm Type New layer 0 AlinGaN Fraction 3. Specify the layer thickness. While ac	
AN thickness of the first n-GaN layer is sev	
Layer properties I I I I I I I I I I I I I I I I I I I	
General properties : reduced thickness of 500-1000 nm. It n	
Layer name : n-GaN Layer thickness (nm) : 500 be just several times higher than	the
thickness of depletion region	
Layer type : Alloys Dislocation density (cm ⁻ -2) 0	-
AllaGeN	-
Use composition fluctuation model	
Composition : Fraction Start point End point Middle point DOS tail parameter Un (eV)	
	-
	_
	- 1
Stru valization GaN 1 4. If AllnGaN alloy was used to create	
Dopi ty Relax GaN layer, proper composition should be	-
1. Click Edit Layer button	_
or just double-click the entration : For each alloy layer, composition at	-
laver row in the table to eStart pointEnd point the start point must be specified and	
open the window with the ⁻³	
layer properties [cm^-3] 0 unity. (Composition specification will be	
discussed in more detail in the next slide)	

Additional information: graded composition

item means that this component is determined automatically to make total composition equal to 1.

Step 2 (Continued): Specification of the doping and mobility

Layer properties					
General properties :				Non-radiative recombination :	
Layer name : n-GaN L	ayer thickness (r	nm): 500		Electron non-radiative lifetime (s)	
				Hole non-radiative lifetime (s)	
Layer type : Alloys		– Quantum		Dislocation density (cm^-2)	1
. Specify donor concentration f 2e18 cm ⁻³ and keep zero		₩ell		Use composition fluctuation model	
and keep zero	End point	Middle point		DOS tail parameter Un (eV)	
	<mark>۲</mark>		=	DOS tail parameter Up (eV) 0	
🖉 InN	0			4	-
🖉 GaN 🛛 🔽	1				
				Crystal lattice relaxation :	_
				Degree of relaxation	
Dopant concentration :			_	C Relaxed lattice constant a (nm)]
Type V Start point					
Donors (cm^-3) 2.000E+18		p the default	valu	ues	
Acceptors (cm^-3)	for both	n mobilities			
Mobility :				3. Accept the changes	
Type Start point	ma point	Middle point	.		
Electrons (cm^2/V/s) 100					
• Holes (cm^2/V/s) 10					
Composition preview				OK X Cance	1

Note that **dopant concentration** means exactly the **concentration of the doping atoms**, NOT the carrier concentration which is calculated by the program! Hole concentration in, for instance, III-nitrides may be ~50 times lower than Mg concentration because of high activation energy.

Step 2 (Continued): Adding InGaN quantum well layer

Layer properties	
General properties : Layer name : InGaN-QW Layer thickness (nm) : 3	 To add InGaN quantum well layer, click Add Layer in Heterostructure window and choose Alloys->AllnGaN.
Layer type : Alloys AllinGaN Well	Double-click the new layer to edit it. Re-name the layer to InGaN-QW and specify the layer thickness to be 3 nm.
Composition : Fraction Start point End point Middle point	DOS tail parameter Un (eV) 0 tail parameter Up (eV) 0
	is layer as a Quantum Well layer.
■ GaN 0.87 ▼	Crystal lattice relaxation : Degree of relaxation
Dopant concentration : Oint Middle point Type Start point Middle point Donors (cm^-3) 0 Image: Start point	○ Relaxed lattice constant a (nm)
Acceptors (cm ⁻³) 3. For each alloy layer, composition point must be specified. Here, we con Type s QW with 13% Indium content. Sum of	isider InGaN
Electrons (cm ² /V/s) 100 to be unity Holes (cm ² /V/s) 10 Blank End point and Middle point column to that composition does not vary across to that compositin does not vary across to that co	

Step 2 (Continued): Shockley-Read-Hall recombination

These two parameters describe **carrier lifetimes** with respect to point defects. Blank fields mean that this recombination channel is ignored for this layer

	Layer properties							
	General properties :					Non-radiative recombination : —		
	Layer name : InGa	aN-QW	Layer thickne	ss (nm) : 3		Electron non-radiative lifetime (s)		
						Hole non-radiative lifetime (s)		
	Layer type :	Alloy	S	Rua	antum	Dislocation density (cm^-2)	1.000E+09 -	
		AllnGaN		v	vell	Use composition fluctuation mode		
	- Composition : Fraction	Start point	End point	Middle point	t	DOS tail parameter Un (eV)		
	• AIN	0 -				DOS tail parameter Up (eV)	Specify the dislo	cation
	InN GaN	0.13 •				DOS tail parameter Usp (e¥)	density of 1e9 cr	
		0.07		_		Crystal lattice relaxation :		
In SiLEN	Se, there are tw	vo ways to sp	ecify the	rate of non-		Degree of relaxation	0	
radiative	Shockley-Read-	Hall recombi	nation. Or	ne is direct		C Relaxed lattice constant a (new particular data in the second secon	m) 🚽	
-	tion of the carrie		-		int			
other way	y is to use an ori	iginal model w	hich relate	es the carrier				
lifetimes	with the dislo	cation densit	y. Both i	mechanisms				
contribute	e to the total	non-radiative	e recombi	ination rate				
independ	lently, see Physic	s Summary fo	or details.		int			
	Holes (cm^2/V/s	10						
	Composition prev	iew				C CK	X Cancel	

Section Composition fluctuations allows

Step 2 (Continued): Composition fluctuation and relaxation

					the user to input parameters related to
Layer properties					Indium composition fluctuations in InGaN
General properties :				Non-radiative r	material. Default Un and Up parameters are
Layer name : InGal	N-QW	Layer thickness (n	n) : 3	Electron non-ra	a 35 meV and 15 meV, respectively
				Hole non-radial	tive lifetime (*
Layer type :	Alloy	/S	Quantum	Dislocation der	nsity (cm^-2)
	AllnGaN		Well	Use compositio	on fluctuation model 🔽
C					
- Composition : Fraction	Start point	End point	Middle point	DOS tail param	neter Un (eV) 0.035
AIN	0 -			DOS tail param	neter Up (eV) 0.015
InN	0.13 👻	i i		DOS tail param	neter Usp (eV) 0.025
🔹 GaN	0.87 💌	i i i		-	
		ii		Crystal lattice r	relaxation :
				Degree of r	relaxation 0
		1		C Relaxed lat	ttice constant a (nm)
 Dopant concentratio Type 	on : Start poir	nt Endipoint	Middle point		
 Donors (cm⁻³) 					Zero degree of relaxation means
Acceptors (cm^-3)		Alternatively t	o assigning th	e relaxation	that no relaxation occurs in this
			eft interface of t		layer (by default, heterostructure
– Mobility : Type		•	fy the relaxed la		is assumed to be grown
 Electrons (cm²/A) 			lso specified usi	•	pseudomorphically, i.e., all layers
		function or by ta			have the same lattice constant)
Holes (cm^2/V/s)	10				
Composition previ					✓ OK X Cancel
Composition previ	ew				

Step 2 (Continued): Copy, paste and move layers

Step 2 (Continued): Creating periodic structures

Step 2 (Continued): Finalizing the structure

	I D D O E	erials properties R	esults Spectrum Lase	r parameters Waveguide PL paramete	ers		
rs :		naio proponaio 1		Current layer parameters :			
N	Name	Thickness, nm	Туре		Composition		
1	n-GaN	500	AlinGaN	Fraction	Start	End	Middle
2×4	n-GaN-barrier	12	AllnGaN	AIN	0		
3X4	InGaN-QW	3	AllnGaN	InN	0		
4	uid-GaN-barrier	12	AllnGaN	GaN	1		
5	p-AlGaN	60	AllnGaN				
6	p-GaN	200	AllnGaN	Dopant o	concentration (cm	<u>^-3</u>]	
2				Dopant	Start	End	Middle
	following MQW-ex with the software (slightly different ve the top barrier is diffusion from p-sid	this example ersions). Plea p-doped bec	has several se note that	Inclineallow one to inspectDrientthe variation of keyWhole heterostructuSecond-order variationbe shown as the line	/ parameters ure. Note that ation of para	across the at in this plot	
	p						

Step 3: Specification of polarity

<u>F</u> ile <u>H</u>	eterostruc	ture <u>M</u> a	terial properties <u>R</u>	un <u>E</u> xport <u>T</u> o	ols <u>W</u> indow	He <u>l</u> p	
D.	-			8 🗖 🖓			
Heteros	structure	Global p	parameters Mater	ials properties	Results Spe	ctrum Lase	r parameters Waveguide PL parameters
Layers	:				r		Current layer parameters :
	N		Name	Thickness, nm	Ту	1 The	user can choose one of the standard
₩ ₽	1	n-GaN		500	Alln(structure orientations including nonpolar
\square	2X4	n-GaN-ba		12	Allni		°
	3×4	InGaN-QV		3	Allni		mipolar ones from the drop-down menu.
	4	uid-GaN-b	Darrier	12 60	Allni		ctive inclination angle will be shown in the
	c c	p-AlGaN p-GaN		200	Alini	box be	OW
\square		produce		200			e on tem of
							Dopant End Middle
\square							Donors 000E+18 0
							Heterostructure orientation :
							Orientation (0001) (Ga-polar)
			Heterostructur	e orientation :-			
			Orientation	[0001] (Ga	nolar)	-	Inclination angle (degree):
			Unentation	[0001] (Ga		<u> </u>	
				. [000-1] (N-	polar)		
	ı ture visua	lizatio	Inclination ang	le nonpolar			
	g Mobili			[10-1-3] (se [11-22] (se			
	5 1100	31.1.		[10-1-1] (se	emipolar)		
				Custom Inc	lination Angle		
							2. Choosing Custom Inclination Angle
							allows one to specify any inclination
							angle in [0,180] range

Step 3 (Continued): Temperature and solver options

Tutorial 1: Specifying a New Problem in SiLENSe

Step 4: Running the simulation of the band diagram

Step 4 (Continued): Consistency of input data and simulation results, "locking" of the input data

In SiLENSe, all completed results are considered as a part of the project file and saved with it. To keep self-consistency between the input data and results, the project input data are "locked" once at least one result is computed.

For "locked" project, most of the options for editing heterostructure are disabled. Edit Layer button is enabled, while most of the layer properties appear in read-only mode, that is shown by the grey color of the text fields.

The only properties one can change for "locked" project is the Layer name, the Active region flag, and the Usp parameter (since the latter two do not effect the band diagram simulation)

To be able to edit the input data, one needs to clear all the results by **clicking the lock button** and thus unlock the editing.

These restrictions may look strange at the first glance, but they guarantee that simulation results stored in the project file are always consistent with the input data. So, you do not need to worry about remembering what parameters the results you see correspond to, you can just check them in the project file.

Step 4 (Continued): Results tab

Step 4 (Continued): Neat tricks with zooming and moving

Step 4 (Continued): LED results

<u>File</u> <u>H</u> eterostructure <u>M</u> aterial properties	; <u>R</u> un <u>E</u> xport <u>T</u> ools <u>W</u>	<u>/</u> indow He <u>l</u> p		•	•		
Heterostructure Global parameters M		🔊 IQE, sp	iew more resp bectrum, etc. w->LED Resu) you can (either go to		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A Export to	SpeCLED	This butto wavelengths and fills the re	for all the li	sted biases		×
N Bias J rad Jnra	ad JSRH JAuger	Jn Jp	Jn right Jp left	IQE Injeff	m Peak Wl	FWHM n2D	p2D tau diff
☑ 1 2.5 4.688E-05 8 3E-07 4.599E ☑ 2 2.6 0.0008 5E-05 0.000		4.688E-05 4.688E-05 0.0008 0.0008	-3.693E-10 -3.694E-10 -5.940E-09 -5.942E-09	0.0190 0.9561	1.3924 1.3924		12 2.980E+08 1.140E-05 12 1.743E+09 1.140E-05
☑ 3 2.7 0.0121 117 0.011 ☑ 4 2.8 0.2092 27 0.144 ☑ 5 2.9 2.9651 38 1.624 ☑ 6 3 24.8212 43 11.82 ☑ 7 3.1 113.366 4 53.21 ☑ 8 3.2 304.616 2 148.02 ☑ 7 3.1 113.366 4 53.21 ☑ 8 3.2 304.616 2 148.02 ☑ 8 3.2 304.616 2 148.02 ☑ 8 3.2 304.616 2 148.02 ☑ 8 3.2 304.616 2 148.02 ☑ 9 9 9 9 9 9 ☑ 10 0.010 10 10 10 10 ☑ 113 113.02 10 10 10 10 ☑ 10 10 10 10 10 10 <th></th> <th>ficiency IV curve </th> <th></th> <th>× 0.9586 0.9711 0.9800 0.9808 0.9814 0.9838 0.9853 0.9818 0.9354 41 3.51</th> <th>1.3919 1.3590 1.4589 24 1.8205 24 2.5466 24 3.9135 19 5.6648 30 7.0548 39 7.1150 25 66 35 48 50</th> <th>Peak WL FWHM 430.7999 33.237 431.8502 28.0412 431.8502 21.9468 430.2019 17.6644 428.1222 15.5490</th> <th>2 1.065E+10 1.799E-06 2 7.616E+10 2.989E-07 2 4.443E+11 5.211E-08 2 1.463E+12 1.075E-08 2 3.246E+12 3.525E-09 3 7.938E+12 1.789E-09 3 7.938E+12 1.165E-09 3 1.071E+13 8.706E-10 2 1.416E+13 6.930E-10</th>		ficiency IV curve		× 0.9586 0.9711 0.9800 0.9808 0.9814 0.9838 0.9853 0.9818 0.9354 41 3.51	1.3919 1.3590 1.4589 24 1.8205 24 2.5466 24 3.9135 19 5.6648 30 7.0548 39 7.1150 25 66 35 48 50	Peak WL FWHM 430.7999 33.237 431.8502 28.0412 431.8502 21.9468 430.2019 17.6644 428.1222 15.5490	2 1.065E+10 1.799E-06 2 7.616E+10 2.989E-07 2 4.443E+11 5.211E-08 2 1.463E+12 1.075E-08 2 3.246E+12 3.525E-09 3 7.938E+12 1.789E-09 3 7.938E+12 1.165E-09 3 1.071E+13 8.706E-10 2 1.416E+13 6.930E-10
4	<			>		× Close	

Step 4 (Continued): More LED results

There are several ways to export the computed results in ASCII format, try the icons below and the **Export** section of the menu

While **Export to SpeCLED** button can be used to export of the results for its further use in SpeCLED, we recommend a newer alternative option (see step 6)

× -	LED	Results	

Edit Show Run Export

J		X 2	R 🛛	l 📐 🔩		M	📕 Export	to SpeCLEE											
	N	Bias	J	Jrad	rad	J SRH	J Auger	Jn	Jp	Jn right	Jp left	IQE	lnj eff	m	Peak WL	FWHM	n2D	p2D	tau diff
	1	2.5	4.688E-05	8.913E-07	3E-05	4.598E-05	4.783E-09	4.688E-05	4.F88E-05	-3.693E-10	- 694E-10	0.0190	0.9561	1.3924	430.7999	33.2377	3.650E+12	2.980E+08	1.140E-05
	2	2.6	0.0008	4.016E-05	007	0.0007	1.767E-07	0.0008	0008	-5.940E-09	942E-09	0.0532	0.9537	1.3924	431.8502	28.0412	3.762E+12	1.743E+09	1.140E-05
	3	2.7	0.0121	0.0017	0104	0.0104	9.251E-06	0.0121	0121	-9.556E-08	69E-08	0.1434	0.9586	1.3919	431.8502	21.9468	3.892E+12	1.065E+10	1.799E-06
	4	2.8	0.2092	0.0	1465	0.1455	0.0010	0.2092	2092	-1.641E-06	48E-06	0.2996	0.9711	1.3590	430.2019	17.6644	4.130E+12	7.616E+10	2.989E-07
	5	2.9	2.9651	1	6263	1.5439	0.0824	2.9651	9651	-2.303E	eakag	e ⁵¹³	0.9800	1.4589	428.1222	15.5490	4.666E+12	4.443E+11	5.211E-08
	6	3	24.8212		.8273	9.5005	2.3268	24 8214	8214	-0.006-2	0.0002	0.0230	0.9808	1.8205	425.4777	15.0542	5.661E+12	1.463E+12	1.075E-08
	7	3.1	113.3667	/	3.2167	31.9236	21.2930	Injecti	on ²	-0.0004	-0.0009	0.5296	0.9814	2.5466	422.5774	15.4161	7.069E+12	3.246E+12	3.525E-09
	8	3.2	304.616		48.0265	65.9437	82.0828	304.0100		0.0081	-0.0023	0.5123	0.9838	3.9135	420.4279	16.1050	8.653E+12	5.493E+12	1.789E-09
	9	3.3	602.9		05.5051	106.7865	198.7187	602.9907	602.7741	0.2122	-0.0044	0.4904	0.9853	5.6648	418.7241	16.9593	1.028E+13	7.938E+12	1.165E-09
	10	3.4	104		48.1357	157.1916	390.9441	1043.3590	1038.9300	4.4218	-0.0075	0.4670	0.9818	7.0548	417.4552	17.9573	1.208E+13	1.071E+13	8.706E-10
	11	3.5	17	þ	43.3774	233.2826	710.0947	1796.9860	1714.4230	82.5513	-0.0120	0.4249	0.9354	7.1150	416.3338	18.8198	1.427E+13	1.416E+13	6.930E-10
			/																

To compute wave functions and **spectrum**, select the row in the table that contains the desired bias (it will get highlighted blue) and press the button that **looks like spectrum**. Once the computations are complete, **Spectrum** tab is opened, see the next slide

🗙 Close

 \times

Step 5: Energy levels, wave functions, spectrum

Step 5 (Continued): Emission and gain spectrum

Tutorial 1: Specifying a New Problem in SiLENSe

Step 5 (Continued): Detailed spectrum

Step 6: Preparing input data for SpeCLED

File H	leterostruct	ture Material propertie	Run Export Tools Window Help	
<u>کر</u>	≥ 🖬		Single Calculation	Ctrl+R
			Series Calculation	Shift+Ctrl+R
Heterostructure Global parameters Ma			Series Calculation for SpeCLED	eguide PL parame
Layers :			Waveguide Modes	ameters :
	N 1 2×4 3×4 4 5 6 -	Name n-GaN InGaN-barrier InGaN-QW uid-GaN-barrier p-AIGaN p-GaN	Laser Characteristics (Simplified Model) Single Calculation With Laser Series Calculation With Laser Run PL Run PL Stop Go to Run, S Calculation for S	Orientation (0001) (Ga-polar)
				Inclination angle (degree):

Automatic generation of data file according to the user specified variation of both p-n junction bias and temperature is supported. The output data for SpeCLED are organized as a single *.txt file with the same filename as the project file. New approach allows running SpeCLED computations with account of lateral carrier diffusion in the active region and surface recombination.

Step 6: Preparing input data for SpeCLED (2)

End of Tutorial 1

Tutorial 2 SiLENSe Laser Edition 5.12

Using SiLENSe for Modeling of Lasers: Simulation of InGaN MQW UV laser diode

Features specific to laser diodes

Specifying options specific for LDs

Computation of the waveguide modes is done independently from computation of the band diagram. However, it also uses the **Heterostructure** and **Materials properties** input data. **Laser parameters** tab contains a number of additional input data for simulation of LDs. They are split into two sections specific to computation of the waveguide modes and to computation of the threshold characteristics, respectively.

Waveguide solver parameters	Values
Actual first layer thickness (nm)	2000
Substrate thickness in computations (nm)	1000
Substrate material	AllnGaN
Substrate composition	{ 0.04 ; 0 ; 0.96 ; }
Mesh step (nm)	0.5

heterostructure tab)

道 🗁 🖬 🕨 🚺

Laser parameters

File Heterostructure Material properties Run Export Tools Window Help

👿 🗉 🗖 🖓

Heterostructure Global parameters Materials properties Results Spectrum Laser parameters Wavequide PL parameters

Cavity length (micron)

Back mirror reflectivity

Output mirror reflectivity

Initial Step (in units of jrad)

Gain Fitting Accuracy (1/cm)

Additional loss (1/cm)

Polarization

Mode index

Actual first layer thickness allows the user to

specify the real thickness of the first layer. (Not

the reduced one that was used in the

Stripe width (micron)

Laser parameters

Waveguide solver parameters Actual first layer thickness (nm)

Substrate thickness in computations (nm)

Values

500 15

0.18

0.18

1

ΤE

2

0.05

0.1 No

No

Values

2000

1000

AllnGaN

0.5

4:0:0.96:

Specifying parameters for computation of waveguide modes

Unlike the carrier transport in LEDs, waveguide modes may depend on the substrate. As you might remember, some reduced thickness is specified for the first and last layers at the stage of the heterostructure modeling, because remote parts of homogeneous bulk n-region do not affect p-n junction and the light generation. However. whole first layer and even substrate mav be important for computation of the waveguide modes

Substrate usually has a thickness ~100 times higher than the heterostructure. However, confined modes exponentially decay in the substrate. Substrate thickness in computations should be at least 2-3 decay lengths

To choose the substrate material, click in the respective input field. A drop-down list will appear. If the material you choose is an allow, specification of composition will be required

Substrate material

Mesh step (nm)

Substrate composition

Waveguide solver parameters	Values
Actual first layer thickness (nm)	4000
Substrate thickness in computations (nm)	500
Substrate material	Sapphire 🔹
Substrate composition Mesh step (nm)	CdMgZnO AIN InN GaN ZnO MgO CdO Sapphire

Computation of waveguide modes

Viewing the confinement factors

[File Heterost	ructure Mate	rial properties	s Run Expo	ort Tools 🛛	/indow Help			
	🔅 🛏 🖩) 🐱 🗉	🗖 🍛		Solver Log			
	Heterostructur	re Global pa	rameters Ma	aterials prope	erties Re	LED Results PL Results		guide PL parameters	
	Refractive index and waveguide modes Far field					Laser Result		Wave	guide modes
						Overlap Inte	als		E 56
	2.6 Wavelength: 369 nm				nm	Subband Co	entration	1. One can see a table of	of optical
	2.55		3				Matrix Elements	confinement factors by	using
	2.5					Detailed Sp Optical Cor	rum ement Factors 🖂	Window -> Optical Con	finement
							ics	Factors menu item.	
	l confinement	t factors					S (Old)		2.5431
Sort						1			2.5403 D: 2.5354
Mode	Total	QW 1	Q₩ 2	QW 3	QW 4	QW 5		· · · · · · · · · · · · · · · · · · ·	1: 2.5322
TE 8	0.0226	0.0048	0.0047	0.0045	0.0044	0.0043			2: 2.5274 3: 2.5223
TM 7	0.0127	0.002	0.0025	0.0025	0.0025	0.0025			4: 2.5177 5: 2.5111
TM 12	0.0076	0.0014	0.Do	0.0015	0.0016	0.0016			5: 2.5045
TM 18	0.0069	0.0015	0.0015	0.00	0.0013	0.0012			
TE 23	0.0063	0.0011	0.0012	0.0013	Die				2.5991
TM 10	0.0061	0.0014	0.0013	0.0012	0.0011	8.	2.	0	optical ≡
TE 30	0.0060	0.0012	0.0013	0.0013	0.0012	0.0011		nfinement factor reaches the lasing the	
TM 35	0.0058	0.0009	0.0011	0.0012	0.0013	0.0012		st. The table can be sorted with respected to here to	
TE 14	0.0057	0.0013	0.0012	0.0011	0.0011	0.0010		e mode which will provide laser gene	
TM 19	0.0056	0.0010	0.0011	0.0011	0.0012	0.0011		member to specify the found mode in	
TM 34	0.0055	0.0012	0.0012	0.0012	0.0011	0.0009	Pa	rameters tab for further calculations	
TE 22	0.0054	0.0011	0.0011	0.0011	0.0011	0.0010		500 1.000 1.500 2.000	5: 2.5515
TE 46	0.0054	0.0011	0.0012	0.0012	0.0011	0.0008)	500 1,000 1,500 2,000	6: 2.5459
TM 42	0.0054	0.0012	0.0013	0.0012	0.0010	0.0007	-		

Viewing the far-field intensity distribution

Tutorial 2: Simulation of InGaN MQW UV laser diode

Parameters for computation of threshold characteristics and laser output power beyond the threshold

5. Computations of the threshold characteristics are done with respect to a certain waveguide mode. You need to specify the polarization (TE or TM) and Mode index of the mode having highest optical confinement factor (see the section on viewing the confinement factors)

Parameters for computation of threshold characteristics and laser output power beyond the threshold. Additional options

File Heterostructure Material properties	Run Export Tools Window Help		
	1.5.1		
Heterostructure Global parameters Mate	rials properties Results Spectrum Laser param	eters Waveguide PL parameters	
Laser parameters			
	Laser parameters	Values	
	Cavity length (micron)	500	
	Stripe width (micron)	15	
	Back mirror reflectivity	0.18	
	Output mirror reflectivity	0.18	
	Additional loss (1/cm)	1	
	Polarization	TE	
	Mode index	2	
	Initial Step (in units of jrad)	0.05	
	Gain Fitting Accuracy (1/cm)	0.1	
	Use Imported Gain Data	No	
	Peak Gain vs Current Density Function		
	Peak Gain Wavelength vs Current Density F		Edit Gain Import Functions
	Use Absorption From Material Data	No	L
tions for using imported data			
tions for using imported data			
gain instead of ones taken			
m spectrum calculation.			
rely used option.			
	Waveguide solver parameters	Values	
	Actual first layer thickness (nm)	2000	
	Substrate thickness in computations (nm)	1000	
	Substrate material	AllnGaN	
	Substrate composition	{0.04;0;0.96;}	
	Mesh step (nm)	0.5	

Computation flow in self-consistent laser model (1)

Modal gain is computed as a sum of the gain values (at given wavelength) with account of confinement factors of each QW

Optical losses include:

- Losses on back and output mirrors;
- Free-carrier losses;
- Additional optical losses in waveguide (can be used as fitting parameter)

Threshold is determined by comparing modal gain and total modal losses. Specification of global parameters (like temperature). Above the threshold, the stimulated recombination is included self-consistently into the drift-diffusion model as following. In the quantum wells, stimulated recombination rate is assumed to be proportional to the spontaneous radiative recombination rate, $R_{stim} = \beta R_{rad}$. Coefficient β is adjusted in order to fit the steady-state condition that modal gain is equal to total optical losses. Increase of β leads to lowering of the carrier concentration in QWs and lowering of the gain.

Output laser power equals to the integrated stimulated recombination rate multiplied by the factor describing losses.

See the next slide for a schematic view

Computation flow in self-consistent laser model (2)

Computation of laser characteristics

Use Run -> Single Calculation With Laser or Run -> Series Calculation With Laser menu item and specify a bias or a set of biases similarly it is done for LED calculations (see the previous tutorial).

Drift-diffusion calculations look very similar to LED calculation. The only difference is that stimulated recombination is accounted for in the QW layers.

Viewing computed laser characteristics

Bias	Power	Current	i	j rad	j stim	Gain	Loss Total	Loss AR	Loss Passive	Wavelength
(V)	(m₩)	(mA)	(A/cm^2)	(A/cm^2)	(A/cm^2)	(1/cm)	(1/cm)	(1/cm)	(1/cm)	(nm)
4	0	71.2865	2376.2180	760.8066	0	2.4419	4.7117	0.3529	0.6971	365.8416
4.05	0	98.7512	3291.7060	937.6923	0	3.3681	4.7293	0.3397	0.7279	365.1951
4.1	0	131.4426	4381.4200	1126.0720	0	4.0524	4.7421	0.3202	0.7602	364.6580
4.15	0	169.3345	5644.4840	1325.0570	0	4.7560	4.7562	0.3079	0.7866	364.3365
4.2	10.9683	201.0896	6702.9850	1532.1160	220.6082	4.6747	4.7578	0.3007	0.7954	364.2295
4.25	23.2647	233.5525	7785.0830	1743.0000	468.9319	4.7988	4.7666	0.3094	0.7955	364.3365
4.35	45.6239	306.4877	1.022E+04	2176.4920	919.2996	4.8378	4.7678	0.2950	0.8111	364.1225

Laser Characteristics window appears after the end of computations

(later one can open it by using Window -> Laser Characteristics menu item)

First tab of the window contains a table. From the "Power" column, one can see that threshold is somewhere between 4.15V and 4.2V bias or between 170 mA and 200 mA current, respectively. If necessary, one can split this interval by several bias point by running additional laser computations. Use **Export** menu to store the table as a text file. Other tabs of the window contains a number of plots and some additional values.

Similarly to LED results, the band diagram, carrier concentrations, etc. are stored in the project file. One can see them by using Laser Results window (Window -> Laser Results menu item). It works very similar to LED Results window described in the previous tutorial, see the next page.

Viewing the results for threshold characteristics

Power tab contains a plot of the output power as a function of current (note that SiLENSe always assumes the linear power increase above the threshold)

Viewing the results (Continued)

Viewing the results (continued)

Computation of threshold characteristics (old model)

sterostructure Global parameters Mater aser parameters	ials properties Results Spectrum [Laser parameters]	Waveguide PL parameters
	Laser parameters	Values
	Cavity length (micron)	1500
	Stripe width (micron)	2
	Back mirror reflectivity	0.9
	Output mirror reflectivity	0.5
	Additional loss (1/cm)	1
	Polarization Running computation	ons E
	Mode index	3]
	Waveguide solver parameters	Values
	Waveguide solver parameters Actual first layer thickness (nm)	4000
	Actual first layer thickness (nm)	4000
	Actual first layer thickness (nm) Substrate thickness in computations (nm)	4000 500

Simulation results for the old laser model are similar to that for the model with self-consistent treatment of the stimulated recombination. The only difference is that laser output power beyond the threshold is extrapolated linearly by using differential quantum efficiency estimated from the threshold characteristics.

Old model for computations of threshold characteristics uses LED results of band diagram computation. In this simplified model, where is no self-consistent account of the stimulated recombination rate in the drift-diffusion model.

1. First, one needs to run computation of the band diagram and current density for a bias/current range covering the threshold bias/current.

2. Then use **Run->Laser Characteristics (Old)** menu item. During computations, the program seeks for the threshold by doing following tasks for each bias

- Computes gain spectrum and finds its maximum

- Computes the waveguide modes at the wavelength of max gain

- Computes modal gain
- Computes optical losses
- Compares gain and loss

End of Tutorial 2

Tutorial 3 SpeCLED 2008

Specifying a New Problem in SpeCLED: Simulation of a Planar Chip

This tutorial shows how to create new project similar to example "Planar 2" supplied with the software, specify all necessary input data, and start simulations. It includes the following steps:

- 1. Choosing the die type and specification of the layer thickness
- 2. Drawing lateral geometry
- 3. Specification of layers (building 3D geometry from 2D lateral geometry blocks)
- 4. Generation of the computational grid
- 5. Specification of the material properties
- 6. Specification of the active region properties
- 7. Specification of the heat transfer problem and other global parameters
- 8. Running the computations

Step 1: Opening a new project

File	Options	Configuration	Picture	Help	
					Selected object New object
			C:\Tutori: C:\Tutori: C:\Tutori	al\Tutorial_2\VerticalDie.dvx al\Tutorial_5\VerticalDie_RATR al\Tutorial_3\Planar2.dvx al\Tutorial_1\Planar.dvx pen Project Press Start Net	tart Program 0.dvx Open Existing Project Exit
<u>e</u>	<u> </u>	Draw Color		Pen Width Mode Grid	
Geo	om Grid	Layers	Function	s Materials Active Region	Run RATRO

Select Start -> All Programs -> SpeCLED 2008 -> SpeCLED 2008 or click start SpeCLED GUI. You can also use the respective desktop icon or just clock on the SpeCLED_RATRO.exe

After SpeCLED GUI is started, Start Program dialog window appears. It allows the user to either start a new project or open an existing one. A list of recent projects is available.

Step 1 (Continud): Choosing the die type

Step 1 (Continued): Specification of the layer thicknesses

Project Configuration window is opened
1. Assign thickness of the semiconductor layers, electrodes, and pads, and substrate as follows: n-semiconductor(a) = 5 p-semiconductor(A) = 0.5 mesa depth (M) = 1.1 p-electrode (D) = 50 n-electrode (d) = 20 n-pad(p) = 10 p-pad(P) = 10

2. Assign parameters describing the substrate thickness: top (part of the) substrate(E) = 100 bottom (part of the) substrate (F) = 0
3. Assign relative width of the bottom part of the substrate (1 for straight vertical, <1 for narrowing, >1 for widening): substrate x-extension = 1

substrate y-extension = 1

Step 1 (Continued): Specification of the layer thickness

Step 2: Drawing the outlines of the layers

SPL	C:\Tutorial\Separate_files\Tutorial_1\Planar.dvx [Registered]	
File Options	Configuration Picture Help	
X=2.06 Y=832.62	Selected object New object	
-		
5 33 34 4 5 4 5 4 5	1. Click Geom tab to open a window for assigning the 2D die geometry	 Main SpeCLED window is opened To specify the geometry, one needs to draw an outlines of LED die layers projected onto the base plane. Particularly, the following die elements should be drawn: n-contact semiconductor layer p-contact semiconductor layer n- and p- electrodes n- and p- pads contours of wire bonding optional layers: p-spreading (ITO) layer and n-and p- blocking layers Note that all coordinates are specified in microns
	Select an individual object; Shift-Click - select a closed contour by clicking on its boundary.	Axis Id
Geom Grid	d Layers Functions Materials Active Region Run RATRO	

Step 2 (Continued): Drawing a rectangle

Step 2 (Continued): Editing the coordinates manually

Step 2 (Continued): Editing the coordinates manually

Step 2 (Continued): Adding an object

Step 2 (Continued): Normal splitting

To draw a vertical boundary of the mesa, use one of the tools dropping a normal to the line from a selected point.

As a result, the original bottom line will split in two parts and the vertical line connecting a point and the bottom line will be added.

Note that the bottom ending point will be marked green – the point is shared by several lines. At the same time, the point in the middle will stay red as dangling.

Note that **Red** color of an ending point marks a dangling line

Green color marks an internal point of a contour, in other words, point connecting two or more lines

Step 2 (Continued): Adding another side

Step 2 (Continued): Linking the points

Step 2 (Continued): Adding a circle to draw n-pad

2. Define the circle center (click and release the left mouse button)

3. Move the cursor from the circle center. Press the button again and move the mouse keeping the button pressed. The current circle position defined by the current cursor position will be shown in a thin gray line

4. Release the button to assign the circle position.

5. Position of the selected circle can be edited in the **Object Editor** like the position of a line. You can edit three values: center coordinates Xc and Yc and the radius R

6. Alternatively, you could have used **New object** tab to add a circle and manually edit its parameters

Step 2 (Continued): Adding vertical or horizontal lines

To draw the p-electrode and ppad we need to add several vertical and horizontal lines

Draw the contours of the pelectrode using Add Vertical or Horizontal Line tool with the following coordinates:

$$(X = 14, Y = 336)$$
$$(X = 14, Y = 14)$$
$$(X = 200, Y = 14)$$
$$(X = 200, Y = 144)$$
$$(X = 336, Y = 144)$$
$$(X = 336, Y = 336)$$

Draw the contour of p-pad using **Add Circle** with the following coordinates:

$$(Xc = 90, Yc = 265, R = 50)$$

Step 3: Specification of layers

Now the contours are drawn and one needs to convert them into a 3D geometry. You have assigned the thickness of the layer right after the selection of the chip type, but the layers there are listed "by name" (mesa depth, pelectrode, n-pad, etc.) and the software does not know "who is who". Now we will sort it out by establishing connection between outlines and functional elements

As you pick them, they are filled with the **Red** color, see below. To exclude block from selection, click it again.

Step 3 (Continued): Specification of layers

All other chip elements to be specified as follows:

- 1. p-semiconductor: all area except the etched mesa. The active region area has the same shape as psemiconductor. For vertical LEDs, p-semiconductor layer is not specified. It is assumed to cover all the die area.
- 2. Electrodes and pads: metallic layers, where distribution of the electric potential and electric current is computed. It is suggested (but not obligatory) that electrodes are used to represent thin semitransparent metallic layers, while pads represent thick layers. Electrode layer to be specified even if the contact is thick (in this case, the electrode might has the same geometry as the respective pad).
- 3. Wires: areas of wire bonding. They are used only to set up boundary conditions for the electric potential.

Note the following requirements: p-semiconductor has to include p-electrode, which has to include p-pad, which has to include p-wire. Similarly, mesa has to include n-electrode, which has to include n-pad, which has to include n-wire. If optional p-spreading layer is used, it should be inside p-semiconductor and include p-electrode

Step 3 (Continued): 3D view

Now the die geometry is specified and you can check it in 3D View. Click **Draw 3D** button on the left.

Window 3D View will be opened

The planar die height is much smaller than its width. One can change zscale to inspect fine details

The semiconductor layers and pads are shown proportional their actual thickness in microns

The electrode thickness is assumed to be negligible, so they are shown with some fixed small non-zero thickness

One can show or hide die elements by the respective check boxes

Step 4: Generation of the computational grid

Switch to the tab window Grid to generate the computational grid

To generate the grid in a 2D domain, the user should assign the fragmentation of the domain boundaries

In Automatic Mode (All Edges), all boundaries are split in grid faces of the same size. It can often serve as an excellent starting point provided that the reasonable step of the boundary fragmentation is chosen.

We recommend choosing a short boundary and splitting it in several fragments. The same fragmentation density will be applied to all the other lines, see the next page.

Step 4 (Continued): computational grid in auto mode

Later, one can manually refine grid by choosing **Selected Edge** mode, and correct fragmentation of several boundaries.

Please, note that the rougher the grid, the faster will be your computations and the lower will be accuracy. We recommend that you start with a rough grid, similar to shown on the left, to get the first solution and inspect it in terms of possible errors of the input. Once you are sure that the input is correct, try refining the grid (for instance, by assigning more intervals to the same short boundary you used at the previous stage) and compare the two solutions. For estimates, it is often sufficient to use a rough grid, while for final results and for studying the effect of minor changes it is important to have a detailed grid. Also, note that the grid should be particularly good at the areas of high currents or high gradients.

Step 5: Specification of material properties

Step 5 (Continued): Specification of material properties

Step 5 (Continued): Using a constant value for properties

Step 5 (Continued): Using functions to specify properties

Step 5 (Continued): Conductors and insulators

C:\Tutorial\Separate_files\Tutorial_1\Planar.dvx [Registered]	
File Options Configuration Picture Help	
Materials Properties "Au" (Conductor)	
n-GaN p-GaN Au Properties COND COND - Heat Conductivity, W/(m*K) Parametric Dependence C constant C expres	1. Add a conductor material for electrodes and pads. For a Conductor material, you should assign the thermal and electric conductivities only. Insulator material is proceeded similarly with
Conductor Insulator	specification of the thermal conductivity only.
C Transparent conductive oxide	2. Just like it the previous step, assign the following parameters: COND (heat conductivity) 315 W/(m·K) ECOND (electric conductivity) 4.1×105 (Ω·cm)-1
Geom Grid Layers Functions Materials Active Region Run RATRO	

STR

Step 6: Importing active region properties from SiLENSe

Step 6 (Continued): Viewing the properties from SiLENSe

The files imported at the previous stage contain the following data:

- Current density as a function of the bias
- Internal quantum efficiency as a function of current density
- Emission spectrum for each bias

3. Plots for all loaded files are drawn. The selected plot is drawn in red. The other plots are drawn in blue

Step 6 (Continued): Viewing the spectrums from SiLENSe

SIR

Step 6 (Continued): Parametric specification of active region

Step 7: Specification of the heat transfer problem

File Options Configuration Picture 2. Radio group Heat Transfer enables one to switch between computation of the current spreading at fixed temperature and coupled problem of the current spreading and heat transfer				
Heat Transfer Initial Tem Isothermal Current Spreading T, K Coupled Current Spreading and Heat Transfer T, K Light Extraction Efficiency (0,1) 0.25 Materials p-semiconductor p-GaN	Heat Transfer Boundary Conditions Alpha, W/m^2/K Ta, K pPAD External Surface 0 300 nPAD External Surface 0 300	3. Input device temperature for isothermal problem. Otherwise, input initial guess for the temperature		
n-semiconductor n-GaN p-electrode Au n-electrode Au p-pad Au n-pad Au p-pad Au p-spreading layer n-spreading layer T	Substrate Bottom Surface 1E5 300 Contact Resistance (0hm*cm*2) pElectrode 0 nElectrode 0 0 Current Solver Settings Output Computation Mode Single Calculation • Series Calculation • Series Calculation for SimuLAMP Total Current Range Initial Voltage, V 3.5 Min 10 mA Voltage Fitting Step, V 0.1 Voltage Variation Step, V 0.01 0.01 •	 4. Considering the chip where substrate is mounted onto the heat sink, let us specify the heat transfer coefficient for substrate bottom surface only. Reasonable default is 1e5 W/(m²K). For our case, let us keep zero values for the heat transfer coefficients for pads. On the contrary, for flip-chip mounted LEDs one should specify heat release through the pads. 		
Geom Grid Layers Functions Materials Active Region		All other surfaces are always considered adiabatic		

Step 7 (Continued): Specification of global parameters

File Options Configuration Picture Help Heat Transfer C Isothermal Current Spreading Coupled Current Spreading and Heat Transfer Light Extraction Efficiency (0,1) Materials	1. Assign some initial guess for Light Extractions Efficiency (0.25). This value can be updated after light extraction computations are made by RATRO	
p-semiconductor p-GaN n-semiconductor n-GaN p-electrode Au n-pad Au n-pad Au substrate Sapphire p-spreading layer Image: Constrained state s	Contact Resistance (Ohm"cm"2) pElectrode 0 nElectrode 0 Current Solver Settings Output Computation Mode Computation Mode Computation Mode Computation Mode Computation for SinuLAMP Total Current Range Min 10 mA Max 150 mA Voltage Fitting Step, V 0.1 Voltage Variation Step, V 0.01 NaN, N, N, N,	Having no additional information, us keep zero values for the actrode contact resistances Light Extractions Efficiency is used to calculate the external quantum efficiency and wall-plug efficiency For simulations with self-heating effects, it is also used to determine the heat source related to ligh absorption in the chip (it is assumed that all absorbed light contributes to the heat source in the active region)

Step 8: Running computations

Before running the computations, do not forget to select the File -> Save As ... menu item to save the project

Current Solver Settings Output		The following modes of running computation are available:
C Series Calculation	To run a computations for a given urrent, use Single Calculation	 Single Calculation Series Calculation Series Calculation for SimuLAMP
C Series Calculation for SimuLAMP	Voltage Initial Voltage, V 3.5 Voltage Fitting Step, V 0.1	3. Set parameters of the current fitting by the voltage variation:
2. Set current to 100 mA		Initial Voltage = 3.5 V Voltage Step = 0.1 V - a fitting parameter, can be rather high
	3. Run Run Solver	

Step 8 (Continued): Running series computations

ſ	Current Solver Settings Output	
	Computation Mode Single Calculation Series Calculation Series Calculation for SimuLAMP	 2. Specify the following values: Total Current Min 10 mA Total Current Max 150 mA Initial Voltage 3.5 V - initial voltage
	Total Current RangeVoltageMin10mAMax150mAVoltage Fitting Step, V0.1Voltage Variation Step, V0.01	is used only for fitting the minimal current (here, 10 mA) by the voltage variation Voltage Variation Step 0.01 V - step of the I-V characteristics,
	3. Run Run Solver	should be rather small

Step 8 (Continued): Running computations for SimuLAMP

End of Tutorial 3