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_ Modeling approach

Input parameters:

» Reactor geometry

» Operating temperature and pressure
» Gas flow rates

Available precursor gases:

» MO source: TMGa, TEGa, TMAI, TMin
» Carrier gas: NH;, N,, H,

» Dopant source: SiH,, MgCp,

Modeling of MOCVD growth of the following materials:
GaN

AIN

AlGaN

InGaN

InAIN
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Reactor geometry and temperature

Planetary reactor

Rotating disk reactor
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Growth of the AIGaN/GaN HEMT Structure in Veeco’s Propel ™ reactor

Process Condition Optimization for High Throughput and High Efficiency Growth of
the AlGaN/GaN HEMT Structure in a Single Wafer Rotating Disc MOCVD Reactor

B. Mitrovic*, R Bubber, J. Su, E. Marcelo, M. Deshpande. and A. Paranjpe
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Optimization of the
process conditions
allows elimination of
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Significant improvement in process time (~50%)
and source efficiency is achieved during
AIN/AIGaN superlattice HEMT structure growth

Growth Rate (um/hr)
N
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on 200mm Si substrate while maintaining the o O
desired material quality 5
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— AIN growth in 6x8” Taiyo Nippon Sanso UR 26K reactor

Growth rate vs total flow Growth rate as a function of the carrier
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Axial position of satellite rotation [mm] Distance from upstream edge of substrate [mm]

Modeling allows control of AIN growth rate value and
growth rate uniformity over the 8” wafer

‘\ TAIYO NIPPON SANSO

Data: A. Ubukata et al., Phys. Status Solidi C 14 (2013)
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@& Carbon incorporation in GaN

Carbon is the impurity commonly used for fabrication of high-resistance GaN buffer
layers in high power electronic devices. On the other hand, carbon in GaN is undesirable
in some applications.

The rate of carbon incorporation depends on many factors and has to be controlled

accurately. _
Data: W. Lundin et al, ICMOVPE-2018
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Optimization of Carbon in 8” GaN growth

Carbon concentration

2-0_‘ hasic
» Carbon incorporation rate S 167 optimized
depends on many parameters % 12
Q i
» It is very difficult to achieve s 12- M
good carbon uniformity for g 197
large-diameter wafers g 081
o 0.6—_
» Advanced optimization of B 0.4
growth recipe is necessary £ 0.2
< 0.0 . . ; ‘ ; . . !
-0.10 -0.05 0.00 0.05 0.10

Distance along the wafer, m
Simulations allows to find the growth conditions providing appropriate carbon
concentration in the growing GaN layer and uniform carbon concentration over the
surface of 8” wafer
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Stress and dislocation behavior
and wafer bowing in GaN growth
on Silicon

STREEM-AIGaN software
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_ Modeling approach

Input parameters:

» Type of the reactor

» Thickness and diameter od the substrate

» Properties of each layer in the stack: composition, doping, thickness
» Growth conditions

STREEM predictions:

» Curvature evolution of curvature at the stages of heating, growth, and
cooling

» Stress relaxation and dislocation dynamics

» Crack formation during the growth and after cooling of the structure

» Influence of the process parameters on the through-wafer temperature
drop and its contribution to the structure bow

» Stress state in the particular layers via processing of in-situ curvature data
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GaN-on-Si based HEMT epi-wafers with
AIN/AIGaN superlattice buffer, grown in

SiN passivation production-scale reactor
AlGal barrier v" GaN-on-Si based HEMT
JR epi-wafers, grown in
C:GaN production-scale reactor
v AINJAIGaN superlattice
uffer
103 periods

Japanese Journal of Applied
AlGaN Physics 58, SCCD26 (2019)

.
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Stop-growth experiments
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Modeling reproduces stop-growth experiments designed to evaluate the effect of individual

buffer parts on RT how:
« RT bow is predicted for various thickness and composition of the stack

* Plastic relaxation in silicon wafer is not expected
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Curvature evolution
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+ Adjustment of the recipe provides almost zero curvature after cooling
» Linear variation of the curvature for the most part of the SL: weakly changing averaged stress
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= Analysis of the stress and TDD evolution in the SL

v AlGaN/AIN superlattice is effective in

» Computed temporal variation of the filtering the dislocations, whose
stress and dislocation density (the density keeps reducing in the C:GaN
inset shows the details of the stress and u-GaN layers grown on top of the
evolution in the bottom part of the SL) SL with no nucleation of new

@ dislocations
o S(tiressf 50'00 - 10?00 . 15?00 - 20?00 . 25?00 . -.- —.'53,0 v" Unintentional gallium incorporation

into nominal AIN layers in the SL has

4 g been identified as a factor governing
' g bow and stress evolution
© 2 3
. o
) {10° @ . =
. 0 - 3 v" Proper design of the epitaxial
» 8 —— i
0 5 structure and optimization of the
% 2 8 process parameters provides final
a Z reduction of TDD down to about 2-103
_ | {10° g cm2 with the good structural
e 4 010 wew W - : uniformity over 6” wafers and a
0 5000 10000 15000 20000 25000 30000 residual bow below 50 pm
Time, s
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